Discovery of a drug candidate for GLIS3-associated diabetes

[1]  T. Evans,et al.  Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. , 2017, Cell stem cell.

[2]  L. Chan,et al.  Differential Gene Dosage Effects of Diabetes-Associated Gene GLIS3 in Pancreatic &bgr; Cell Differentiation and Function , 2017, Endocrinology.

[3]  Albert S. Yu,et al.  An Isogenic Human ESC Platform for Functional Evaluation of Genome-wide-Association-Study-Identified Diabetes Genes and Drug Discovery. , 2016, Cell stem cell.

[4]  A. Brandes,et al.  A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. , 2016, Neuro-oncology.

[5]  H. S. Kang,et al.  The Spatiotemporal Pattern of Glis3 Expression Indicates a Regulatory Function in Bipotent and Endocrine Progenitors during Early Pancreatic Development and in Beta, PP and Ductal Cells , 2016, PloS one.

[6]  Danwei Huangfu,et al.  Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals Mechanisms of Pancreatic Development and Diabetes. , 2016, Cell stem cell.

[7]  Susan M. Schlenner,et al.  Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes , 2016, Nature Genetics.

[8]  E. Dirice,et al.  Early Developmental Perturbations in a Human Stem Cell Model of MODY5/HNF1B Pancreatic Hypoplasia , 2016, Stem cell reports.

[9]  S. Estrem,et al.  Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway , 2015, Drug design, development and therapy.

[10]  Gopika G. Nair,et al.  Controlled induction of human pancreatic progenitors produces functional beta‐like cells in vitro , 2015, The EMBO journal.

[11]  D. Melton,et al.  Generation of Functional Human Pancreatic β Cells In Vitro , 2014, Cell.

[12]  James D. Johnson,et al.  Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells , 2014, Nature Biotechnology.

[13]  Fabian J Theis,et al.  Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes , 2014, Diabetologia.

[14]  C. Wijmenga,et al.  Improving prediction of type 1 diabetes by testing non‐HLA genetic variants in addition to HLA markers , 2014, Pediatric diabetes.

[15]  W. Chung,et al.  β-Cell Dysfunction Due to Increased ER Stress in a Stem Cell Model of Wolfram Syndrome , 2014, Diabetes.

[16]  Y. Takeda,et al.  The Krüppel-like protein Gli-similar 3 (Glis3) functions as a key regulator of insulin transcription. , 2013, Molecular endocrinology.

[17]  Mohammad Wahid Ansari,et al.  The legal status of in vitro embryos , 2014 .

[18]  C. Julier,et al.  GLIS3, a Susceptibility Gene for Type 1 and Type 2 Diabetes, Modulates Pancreatic Beta Cell Apoptosis via Regulation of a Splice Variant of the BH3-Only Protein Bim , 2013, PLoS genetics.

[19]  T. Buchanan,et al.  Systematic evaluation of validated type 2 diabetes and glycaemic trait loci for association with insulin clearance , 2013, Diabetologia.

[20]  B. Chang,et al.  Sustained expression of the transcription factor GLIS3 is required for normal beta cell function in adults , 2012, EMBO molecular medicine.

[21]  Cheng Hu,et al.  A Genome-Wide Association Study Identifies GRK5 and RASGRP1 as Type 2 Diabetes Loci in Chinese Hans , 2012, Diabetes.

[22]  Sinisa Hrvatin,et al.  Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3 , 2012, Nature Biotechnology.

[23]  Wei Lu,et al.  Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians , 2011, Nature Genetics.

[24]  E. Stanley,et al.  INSGFP/w human embryonic stem cells facilitate isolation of in vitro derived insulin-producing cells , 2011, Diabetologia.

[25]  M. Tsai,et al.  The Krüppel-like zinc finger protein GLIS3 transactivates neurogenin 3 for proper fetal pancreatic islet differentiation in mice , 2011, Diabetologia.

[26]  G. Daley,et al.  Stage-specific signaling through TGF b family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells , 2022 .

[27]  Christian Gieger,et al.  New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.

[28]  J. Foley,et al.  Transcription Factor Glis3, a Novel Critical Player in the Regulation of Pancreatic beta-Cell Development and Insulin Gene Expression (vol 29, pg 6366, 2009) , 2010 .

[29]  J. Foley,et al.  Transcription Factor Glis3, a Novel Critical Player in the Regulation of Pancreatic β-Cell Development and Insulin Gene Expression , 2009, Molecular and Cellular Biology.

[30]  H. Kiyonari,et al.  A murine model of neonatal diabetes mellitus in Glis3‐deficient mice , 2009, FEBS letters.

[31]  Helen Schuilenburg,et al.  Genome-wide association study and meta-analysis finds over 40 loci affect risk of type 1 diabetes , 2009, Nature Genetics.

[32]  S. Samson,et al.  The Krüppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription , 2009, Nucleic acids research.

[33]  Iñaki F Trocóniz,et al.  Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-beta kinase antagonist, in mice. , 2008, European journal of cancer.

[34]  L. C. Murtaugh,et al.  Pancreas and beta-cell development: from the actual to the possible , 2006, Development.

[35]  E. Kroon,et al.  Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells , 2006, Nature Biotechnology.

[36]  C. Julier,et al.  Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism , 2006, Nature Genetics.

[37]  P. Herrera,et al.  Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. , 2000, Development.