Mechanical tuning of conductance and thermopower in helicene molecular junctions.

Helicenes are inherently chiral polyaromatic molecules composed of all-ortho fused benzene rings possessing a spring-like structure. Here, using a combination of density functional theory and tight-binding calculations, it is demonstrated that controlling the length of the helicene molecule by mechanically stretching or compressing the molecular junction can dramatically change the electronic properties of the helicene, leading to a tunable switching behavior of the conductance and thermopower of the junction with on/off ratios of several orders of magnitude. Furthermore, control over the helicene length and number of rings is shown to lead to more than an order of magnitude increase in the thermopower and thermoelectric figure-of-merit over typical molecular junctions, presenting new possibilities of making efficient thermoelectric molecular devices. The physical origin of the strong dependence of the transport properties of the junction is investigated, and found to be related to a shift in the position of the molecular orbitals.

[1]  Latha Venkataraman,et al.  Simultaneous determination of conductance and thermopower of single molecule junctions. , 2012, Nano letters.

[2]  Pascal Retailleau,et al.  Helicenes with embedded phosphole units in enantioselective gold catalysis. , 2014, Angewandte Chemie.

[3]  Wei Wang,et al.  Bottom-up chemical synthesis of three-dimensional conjugated carbon nanostructures: from carbon nanocages to carbon nanotubes , 2014 .

[4]  C. Lambert,et al.  Giant thermopower and figure of merit in single-molecule devices , 2008, 0811.3029.

[5]  Takhee Lee,et al.  Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation. , 2011, Physical review letters.

[6]  Arun Majumdar,et al.  Thermoelectricity in Molecular Junctions , 2007, Science.

[7]  T. Majima,et al.  Synthesis and physical properties of a ball-like three-dimensional π-conjugated molecule , 2013, Nature Communications.

[8]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[9]  F. Cacialli Journal of Physics Condensed Matter: Preface , 2002 .

[10]  M. Steigerwald,et al.  Molecular diodes enabled by quantum interference. , 2014, Faraday discussions.

[11]  E. Leary,et al.  Engineering the thermopower of C60 molecular junctions. , 2013, Nano letters.

[12]  C. Lambert,et al.  Redox control of thermopower and figure of merit in phase-coherent molecular wires , 2014, Nanotechnology.

[13]  Wonho Jeong,et al.  Electrostatic control of thermoelectricity in molecular junctions. , 2014, Nature nanotechnology.

[14]  F. Diederich,et al.  Chirality transfer in 1D self-assemblies: influence of H-bonding vs metal coordination between dicyano[7]helicene enantiomers. , 2013, Journal of the American Chemical Society.

[15]  A. Nitzan,et al.  Thermal conductance through molecular wires , 2003, physics/0306187.

[16]  Takashi Kawase,et al.  A chiral wedge molecule inhibits telomerase activity. , 2010, Journal of the American Chemical Society.

[17]  A. Persoons,et al.  Strong enhancement of nonlinear optical properties through supramolecular chirality , 1998, Science.

[18]  J. Autschbach,et al.  Ruthenium-vinylhelicenes: remote metal-based enhancement and redox switching of the chiroptical properties of a helicene core. , 2012, Journal of the American Chemical Society.

[19]  Kim,et al.  Structures, Magnetic Properties, and Aromaticity of Cyclacenes. , 1999, Angewandte Chemie.

[20]  G. Bazan,et al.  Controlling the Thermoelectric Properties of Thiophene-Derived Single-Molecule Junctions , 2014 .

[21]  Marc Gingras,et al.  One hundred years of helicene chemistry. Part 2: stereoselective syntheses and chiral separations of carbohelicenes. , 2013, Chemical Society reviews.

[22]  Michael Dröscher,et al.  Angewandte Chemie International Edition feiert 50. Geburtstag , 2011 .

[23]  B. Kirtman,et al.  Electronic structure, bonding, spectra, and linear and nonlinear electric properties of Ti@C28. , 2011, The journal of physical chemistry. A.

[24]  J. Chocholousová,et al.  An organometallic route to long helicenes , 2009, Proceedings of the National Academy of Sciences.

[25]  K. Itami,et al.  All-benzene carbon nanocages: size-selective synthesis, photophysical properties, and crystal structure. , 2014, Journal of the American Chemical Society.

[26]  Y. Dubi The effect of fluctuations, thermal and otherwise, on the temperature dependence of thermopower in aromatic chain single-molecule junctions. , 2013, The Journal of chemical physics.

[27]  M. Steigerwald,et al.  Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives. , 2012, Nano letters.

[28]  N. Hush,et al.  Adsorption of Pyridine on the Gold(111) Surface: Implications for “Alligator Clips” for Molecular Wires , 2002 .

[29]  Tibor Kudernac,et al.  Reversible Conductance Switching in Molecular Devices , 2008 .

[30]  R. Pati,et al.  Charge transport in strongly coupled molecular junctions: “in-phase” and “out-of-phase” contribution to electron tunneling , 2011 .

[31]  K. Thygesen,et al.  Temperature effects on quantum interference in molecular junctions , 2014 .

[32]  S. Yamago,et al.  Size-selective encapsulation of C60 by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. , 2011, Angewandte Chemie.

[33]  J. S. Seldenthuis,et al.  Applicability of the wide-band limit in DFT-based molecular transport calculations. , 2013, The Journal of chemical physics.

[34]  Ivo Starý,et al.  A straightforward route to helically chiral N-heteroaromatic compounds: practical synthesis of racemic 1,14-diaza[5]helicene and optically pure 1- and 2-aza[6]helicenes. , 2008, Angewandte Chemie.

[35]  H. Sevinçli,et al.  Engineering the figure of merit and thermopower in single-molecule devices connected to semiconducting electrodes , 2010 .

[36]  James M Tour,et al.  Reversible bistable switching in nanoscale thiol-substituted oligoaniline molecular junctions. , 2005, Nano letters.

[37]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[38]  J. Hummelen,et al.  Evidence for quantum interference in SAMs of arylethynylene thiolates in tunneling junctions with eutectic Ga-In (EGaIn) top-contacts. , 2011, Journal of the American Chemical Society.

[39]  J. Cuevas,et al.  Length-dependent conductance and thermopower in single-molecule junctions of dithiolated oligophenylene derivatives: A density functional study , 2007, 0709.3588.

[40]  Y. Qiu,et al.  Synthesis, structure, properties, and application of a carbazole-based diaza[7]helicene in a deep-blue-emitting OLED. , 2012, Chemistry.

[41]  C. Bertozzi,et al.  Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures , 2008, Journal of the American Chemical Society.

[42]  Norito Takenaka,et al.  Helical‐Chiral Small Molecules in Asymmetric Catalysis , 2014 .

[43]  Bryon W. Larson,et al.  Chemical tailoring of fullerene acceptors: synthesis, structures and electrochemical properties of perfluoroisopropylfullerenes. , 2011, Chemical communications.

[44]  H. Tada,et al.  Thermopower of benzenedithiol and C60 molecular junctions with Ni and Au electrodes. , 2014, Nano letters.

[45]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[46]  E. Ruckenstein,et al.  Endohedral chemistry of C60-based fullerene cages. , 2005, Journal of the American Chemical Society.

[47]  C. Stafford,et al.  Giant thermoelectric effect from transmission supernodes. , 2010, ACS nano.

[48]  Massimiliano Di Ventra,et al.  Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions , 2011 .

[49]  Wei Chen,et al.  Reversible single-molecule switching in an ordered monolayer molecular dipole array. , 2012, Small.

[50]  A. Majumdar,et al.  The nature of transport variations in molecular heterojunction electronics. , 2009, Nano letters.

[51]  J. Vávra,et al.  [6]Saddlequat: a [6]helquat captured on its racemization pathway , 2011 .

[52]  Y. Dubi Possible origin of thermoelectric response fluctuations in single-molecule junctions , 2012, 1211.4671.

[53]  G. Cuniberti,et al.  Disorder and dephasing effects on electron transport through conjugated molecular wires in molecular junctions , 2012, 1204.0152.

[54]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[55]  Joachim,et al.  Electronic transparence of a single C60 molecule. , 1995, Physical review letters.

[56]  Yuyuan Tian,et al.  Controlling single-molecule conductance through lateral coupling of π orbitals. , 2011, Nature nanotechnology.

[57]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[58]  S. Louie,et al.  Mechanically controlled binary conductance switching of a single-molecule junction. , 2009, Nature nanotechnology.

[59]  E. Scheer,et al.  Observation of negative differential resistance in DNA molecular junctions , 2010 .

[60]  Alasdair J. Campbell,et al.  Circularly polarized light detection by a chiral organic semiconductor transistor , 2013, Nature Photonics.

[61]  A. Kühnle,et al.  Molecular Self-Assembly of Enantiopure Heptahelicene-2-Carboxylic Acid on Calcite (101̅4) , 2012 .

[62]  M. Ventra Electrical Transport in Nanoscale Systems , 2008 .

[63]  Makusu Tsutsui,et al.  Single Molecule Electronics and Devices , 2012, Sensors.

[64]  M. A. Shcherbina,et al.  Hollow six-stranded helical columns of a helicene. , 2009, Angewandte Chemie.

[65]  A. Majumdar,et al.  Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. , 2009, Nano letters.

[66]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[67]  C. Stafford,et al.  Thermoelectric signatures of coherent transport in single-molecule heterojunctions. , 2009, Nano letters.

[68]  P. Corkum,et al.  Journal of Physics B: atomic, molecular and optical physics , 2015 .

[69]  S. J. van der Molen,et al.  Observation of quantum interference in molecular charge transport. , 2011, Nature nanotechnology.

[70]  Marc Gingras,et al.  One hundred years of helicene chemistry. Part 3: applications and properties of carbohelicenes. , 2013, Chemical Society reviews.

[71]  Colin Nuckolls,et al.  Second-order nonlinear optical properties of highly symmetric chiral thin films , 2001 .

[72]  Bingqian Xu,et al.  Structure determined charge transport in single DNA molecule break junctions , 2014 .

[73]  Matthew R. Golder,et al.  Selective synthesis of strained [7]cycloparaphenylene: an orange-emitting fluorophore. , 2011, Journal of the American Chemical Society.

[74]  T. B. Norsten,et al.  Chiral discrimination in photochromic helicenes. , 2005, Journal of the American Chemical Society.

[75]  Chuan-feng Chen,et al.  Helicenes: synthesis and applications. , 2012, Chemical reviews.

[76]  K. Ernst,et al.  2D conglomerate crystallization of heptahelicene. , 2014, Chemical communications.

[77]  Faraday Discuss , 1985 .

[78]  R. Lazzaroni,et al.  Self-assembly of an asymmetrically functionalized [6]helicene at liquid/solid interfaces. , 2013, Chemical communications.

[79]  L. Walczak,et al.  [11]Anthrahelicene on TiO2 surfaces , 2012 .

[80]  Christian A. Martin,et al.  A versatile low-temperature setup for the electrical characterization of single-molecule junctions. , 2011, The Review of scientific instruments.

[81]  J. Hummelen,et al.  An MCBJ case study: The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface , 2011, Beilstein journal of nanotechnology.

[82]  Diana Adler,et al.  Electronic Transport In Mesoscopic Systems , 2016 .

[83]  L. Venkataraman,et al.  Single-molecule junctions beyond electronic transport. , 2013, Nature nanotechnology.

[84]  Yuyuan Tian,et al.  Local ionic and electron heating in single-molecule junctions. , 2007, Nature nanotechnology.

[85]  F. Pauly,et al.  Modeling elastic and photoassisted transport in organic molecular wires: Length dependence and current-voltage characteristics , 2008, 0801.1323.

[86]  U. Peskin An introduction to the formulation of steady-state transport through molecular junctions , 2010 .

[87]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[88]  Owen Y Loh,et al.  Nanoelectromechanical contact switches. , 2012, Nature nanotechnology.

[89]  F. Diederich,et al.  Self-assembly and two-dimensional spontaneous resolution of cyano-functionalized [7]helicenes on Cu111. , 2011, Angewandte Chemie.

[90]  Y. Pershin,et al.  Effect of noise on DNA sequencing via transverse electronic transport. , 2009, Biophysical journal.

[91]  Direct observation of large quantum interference effect in anthraquinone solid-state junctions. , 2013, Journal of the American Chemical Society.

[92]  J. Locklin,et al.  Measurements of contact specific low-bias negative differential resistance of single metalorganic molecular junctions. , 2013, Nanoscale.

[93]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[94]  T. Markussen,et al.  Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications. , 2011, The Journal of chemical physics.

[95]  C. Joachim,et al.  [11]Anthrahelicene on InSb(001) c(8×2): a low-temperature scanning probe microscopy study. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[96]  Y. Asai,et al.  Thermoelectric efficiency of organometallic complex wires via quantum resonance effect and long-range electric transport property. , 2013, Journal of the American Chemical Society.

[97]  Meng Li,et al.  Turn-on fluorescent sensor for selective detection of Zn(2+), Cd(2+), and Hg(2+) in water. , 2012, The Journal of organic chemistry.

[98]  A. McGaughey,et al.  Coupling of Organic and Inorganic Vibrational States and Their Thermal Transport in Nanocrystal Arrays , 2014 .

[99]  P. Liljeroth,et al.  Charge transport through molecular switches , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[100]  Pastawski,et al.  Conductance of a disordered linear chain including inelastic scattering events. , 1990, Physical review. B, Condensed matter.

[101]  Marc Gingras,et al.  One hundred years of helicene chemistry. Part 1: non-stereoselective syntheses of carbohelicenes. , 2013, Chemical Society reviews.

[102]  L. Long,et al.  Keeping the ball rolling: fullerene-like molecular clusters. , 2010, Accounts of chemical research.

[103]  R. Fasel,et al.  Amplification of chirality in two-dimensional enantiomorphous lattices , 2006, Nature.

[104]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[105]  R. Stanley Williams,et al.  Direct Observation of Nanoscale Switching Centers in Metal/Molecule/Metal Structures , 2004 .

[106]  S. Datta,et al.  Thermoelectric effect in molecular electronics , 2003, cond-mat/0301232.

[107]  S. Mukerjee,et al.  Optimal thermoelectric figure of merit of a molecular junction , 2008, 0805.3374.

[108]  De‐Yin Wu,et al.  Bonding interaction, low-lying states and excited charge-transfer states of pyridine–metal clusters: Pyridine–Mn (M=Cu, Ag, Au; n=2–4) , 2003 .

[109]  Shannon K. Yee,et al.  Fundamentals of energy transport, energy conversion, and thermal properties in organic-inorganic heterojunctions , 2010 .

[110]  J. Gilman,et al.  Nanotechnology , 2001 .

[111]  J. Autschbach,et al.  Metal-bis(helicene) assemblies incorporating pi-conjugated phosphole-azahelicene ligands: impacting chiroptical properties by metal variation. , 2009, Journal of the American Chemical Society.

[112]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[113]  De‐Yin Wu,et al.  Binding interactions and Raman spectral properties of pyridine interacting with bimetallic silver-gold clusters. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[114]  Bingqian Xu,et al.  Probing the Molecule−Electrode Interface of Single-Molecule Junctions by Controllable Mechanical Modulations , 2010 .

[115]  Juan Carlos Cuevas,et al.  Molecular Electronics: An Introduction to Theory and Experiment , 2010 .

[116]  Anders Blom,et al.  Semiempirical model for nanoscale device simulations , 2010, 1004.2812.

[117]  M. Weimar,et al.  [7]-Helicene: a chiral molecular tweezer for silver(I) salts. , 2012, Dalton transactions.

[118]  H. Linke,et al.  Increasing thermoelectric performance using coherent transport , 2011, 1107.0572.

[119]  Christian A. Martin,et al.  A nanoelectromechanical single-atom switch. , 2009, Nano letters.

[120]  P. Avramov,et al.  Structure and electronic properties of hollow‐caged C60 fullerene‐derived (MN4)nC6(10 − n) (M = Zn, Mg, Fe, n = 1−6) complexes , 2015 .

[121]  R. Jasti,et al.  Synthesis, characterization, and crystal structure of [6]cycloparaphenylene. , 2012, Angewandte Chemie.

[122]  M. Strange,et al.  Understanding the length dependence of molecular junction thermopower. , 2014, The Journal of chemical physics.