Properties of measures of information in evidence and possibility theories

[1]  Settimo Termini,et al.  A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory , 1972, Inf. Control..

[2]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[3]  Enric Trillas,et al.  Entropies in finite fuzzy sets , 1978, Inf. Sci..

[4]  I. Good,et al.  The Maximum Entropy Formalism. , 1979 .

[5]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[6]  R. Yager ON THE MEASURE OF FUZZINESS AND NEGATION Part I: Membership in the Unit Interval , 1979 .

[7]  E. T. Jaynes,et al.  Where do we Stand on Maximum Entropy , 1979 .

[8]  Vijay K. Rohatgi,et al.  Advances in Fuzzy Set Theory and Applications , 1980 .

[9]  Ronald R. Yager,et al.  On the Measure of Fuzziness and Negation. II. Lattices , 1980, Inf. Control..

[10]  Prem Nath Arora On characterizing some generalizations of Shannon's entropy , 1980, Inf. Sci..

[11]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[12]  M. Gupta,et al.  FUZZY INFORMATION AND DECISION PROCESSES , 1981 .

[13]  Ronald R. Yager Measures of fuzziness based on t-norms. , 1982 .

[14]  R. Yager MEASURING TRANQUILITY AND ANXIETY IN DECISION MAKING: AN APPLICATION OF FUZZY SETS , 1982 .

[15]  G. Klir,et al.  MEASURES OF UNCERTAINTY AND INFORMATION BASED ON POSSIBILITY DISTRIBUTIONS , 1982 .

[16]  G. Klir,et al.  ON MEASURES OF FUZZINESS AND FUZZY COMPLEMENTS , 1982 .

[17]  U. Höhle Fuzzy Filters – A Generalization of Credibility Measures , 1983 .

[18]  Philippe Smets,et al.  Information Content of an Evidence , 1983, Int. J. Man Mach. Stud..

[19]  Ronald R. Yager,et al.  ON DIFFERENT CLASSES OF LINGUISTIC VARIABLES DEFINED VIA FUZZY SUBSETS , 1984 .

[20]  Bruce G. Buchanan,et al.  The MYCIN Experiments of the Stanford Heuristic Programming Project , 1985 .

[21]  D. Dubois,et al.  A NOTE ON MEASURES OF SPECIFICITY FOR FUZZY SETS , 1985 .

[22]  Ronald R. Yager,et al.  The entailment principle for dempster—shafer granules , 1986, Int. J. Intell. Syst..

[23]  D. Dubois,et al.  A set-theoretic view of belief functions: Logical operations and approximations by fuzzy sets , 1986 .

[24]  Salvatore Sessa,et al.  On the fuzziness measure and negation in totally ordered lattices , 1986 .

[25]  Lotfi A. Zadeh,et al.  A Simple View of the Dempster-Shafer Theory of Evidence and Its Implication for the Rule of Combination , 1985, AI Mag..

[26]  G. Klir Where do we stand on measures of uncertainty, ambiguity, fuzziness, and the like? , 1987 .

[27]  E M Oblow A hybrid-uncertainty theory , 1987 .

[28]  James C. Bezdek,et al.  Analysis of fuzzy information , 1987 .