Scattering properties of natural snow and frost - Comparison with icy satellite photometry

Abstract The recent success in fitting Hapke's 1986 photometric function to Voyager observations of the icy satellites of Uranus and Saturn enables a comparison between their derived regolith parameters and those for terrestrial snow and frost surfaces. Middleton and Mungall (1952, J. Opt. Soc. Amer. 42, 572–579) provide excellent in situ goniophotometric data extending to 154° in phase angle for a variety of snow and frost surfaces. We fit Hapke's 1986 equation to determine the single-scatteringalbedo ω 0 and the one-term Henyey-Greenstein particle phase function g for each of the Middleton and Mungall samples and find very high single-scattering albedos ( w 0 ∼ 0.99) and strongly forward scattering particle phase functions (g = +0.52 to +0.79), in accordance with theoretical considerations based on Mie theory, but in contrast to the observed backscattering (negative g behavior of icy satellites. We suggest that on icy satellites frost grains are aggregated into particles of complex texture which produce the remarkable backscattering behavior. The extremely low temperatures prevalent in the outer Solar System may be significant in preserving such highly textured aggregates.

[1]  B. Hapke Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect , 1986 .

[2]  Joseph Veverka,et al.  Uranus satellites: Hapke parameters from Voyager disk-integrated photometry , 1988 .

[3]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .

[4]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[5]  J. Veverka,et al.  Albedo dichotomy of Rhea - Hapke analysis of Voyager photometry , 1989 .

[6]  J. Veverka,et al.  Backscattering from frost on icy satellites in the outer Solar System , 1990, Nature.

[7]  J. Veverka,et al.  Voyager photometry of Rhea, Dione, Tethys, Enceladus and Mimas , 1984 .

[8]  Bruce R. Barkstrom,et al.  Theory of the optical properties of snow , 1974 .

[9]  J. Veverka Photometry of satellite surfaces , 1977 .

[10]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[11]  J. Goguen,et al.  V photometry of Titania, Oberon, and Triton , 1989 .

[12]  J. Veverka,et al.  The physical characteristics of satellite surfaces , 1986 .

[13]  Thomas C. Grenfell,et al.  The Optical Properties of Ice and Snow in the Arctic Basin , 1977, Journal of Glaciology.

[14]  R. H. Brown,et al.  Voyager Disk-Integrated Photometry of Triton , 1990, Science.

[15]  William M. Irvine,et al.  Infrared optical properties of water and ice spheres , 1968 .

[16]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[17]  B. Buratti Voyager disk resolved photometry of the Saturnian satellites , 1984 .

[18]  J. Veverka The photometric properties of natural snow and of snow-covered planets , 1973 .

[19]  A. G. Mungall,et al.  The Luminous Directional Reflectance of Snow , 1952 .

[20]  Harold W. O'Brien,et al.  Red and near-infrared spectral reflectance of snow , 1972 .

[21]  Joseph Veverka,et al.  Photometric properties of lunar terrains derived from Hapke's equation , 1987 .

[22]  B. Buratti Application of a radiative transfer model to bright icy satellites , 1984 .