Synthesis, biological evaluation, and binding mode of novel 1-[2-(diarylmethoxy)ethyl]-2-methyl-5-nitroimidazoles targeted at the HIV-1 reverse transcriptase.

A novel series of 1-[2-(diarylmethoxy)ethyl]-2-methyl-5-nitroimidazole (DAMNI) analogues were synthesized and tested in cell-based assays and in enzyme assays against HIV-1 recombinant reverse transcriptase (RT). Preparation of the new derivatives was performed by reacting the appropriate benzhydrols or the corresponding bromides with 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole or the 3-hydroxypropyl homologue. Several compounds showed anti-HIV-1 activity in the submicromolar range. Structure-activity relationship studies suggested that meta substitution at one phenyl ring of the diarylmethane moiety strongly influences the antiviral activity. The 3,5-disubstitution at the same phenyl ring led to less potent derivatives. Molecular modeling and docking studies within the RT non-nucleoside binding site confirmed that DAMNIs, similar to other NNRTIs such as TNK-651 and delavirdine (BHAP U90152), assume a butterfly-like conformation that appears to be halfway between that of classical NNRTIs, such as nevirapine, HEPT, TBZ, TIBO, and DABOs, and the conformation of BHAPs. In particular, the diphenylmethane moiety mimics the wings whereas the 1-(2-methyl-5-nitroimidazolyl)ethane portion resembles the BHAP 5-methanesulfonamidoindole-2-carbonylpiperazine portion.

[1]  Hiroshi Harada,et al.  S-1153 Inhibits Replication of Known Drug-Resistant Strains of Human Immunodeficiency Virus Type 1 , 1998, Antimicrobial Agents and Chemotherapy.

[2]  W. Schäfer,et al.  Non-nucleoside inhibitors of HIV-1 reverse transcriptase: molecular modeling and X-ray structure investigations. , 1993, Journal of medicinal chemistry.

[3]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[4]  M Pastor,et al.  Smart region definition: a new way to improve the predictive ability and interpretability of three-dimensional quantitative structure-activity relationships. , 1997, Journal of medicinal chemistry.

[5]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[6]  Richard T. Walker,et al.  Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. , 1996, Journal of medicinal chemistry.

[7]  R T Walker,et al.  Structure-activity relationships of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine analogues: effect of substitutions at the C-6 phenyl ring and at the C-5 position on anti-HIV-1 activity. , 1992, Journal of medicinal chemistry.

[8]  D I Stuart,et al.  Unique features in the structure of the complex between HIV-1 reverse transcriptase and the bis(heteroaryl)piperazine (BHAP) U-90152 explain resistance mutations for this nonnucleoside inhibitor. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G. Cruciani,et al.  Generating Optimal Linear PLS Estimations (GOLPE): An Advanced Chemometric Tool for Handling 3D‐QSAR Problems , 1993 .

[10]  E. De Clercq,et al.  Structural Features and Anti-Human Immunodeficiency Virus (HIV) Activity of the Isomers of 1-(2′,6′-Difluorophenyl)-1H,3H-Thiazolo[3,4-a]Benzimidazole, a Potent Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitor , 1997 .

[11]  A. Mai,et al.  Chiral resolution and molecular modeling investigation of rac-2-cyclopentylthio-6-[1-(2,6-difluorophenyl)ethyl]-3,4-dihydro-5-methylpyrimidin-4(3H)-one (MC-1047), a potent anti-HIV-1 reverse transcriptase agent of the DABO class. , 2001, Chirality.

[12]  R. Pauwels,et al.  Potent and highly selective human immunodeficiency virus type 1 (HIV-1) inhibition by a series of alpha-anilinophenylacetamide derivatives targeted at HIV-1 reverse transcriptase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Silvestri,et al.  1-[2-(Diphenylmethoxy)ethyl]-2-methyl-5-nitroimidazole: a potent lead for the design of novel NNRTIs. , 2000, Bioorganic & medicinal chemistry letters.

[14]  L. Resnick,et al.  Bis(heteroaryl)piperazine (BHAP) reverse transcriptase inhibitors: structure-activity relationships of novel substituted indole analogues and the identification of 1-[(5-methanesulfonamido-1H-indol-2-yl)-carbonyl]-4-[3- [(1-methylethyl)amino]-pyridinyl]piperazine monomethanesulfonate (U-90152S), a s , 1993, Journal of medicinal chemistry.

[15]  Jonas Boström,et al.  Conformational energy penalties of protein-bound ligands , 1998, J. Comput. Aided Mol. Des..

[16]  A. Mai,et al.  3,4-Dihydro-2-Alkoxy-6-Benzyl-4-Oxopyrimidines (DABOs): A New Class of Specific Inhibitors of Human Immunodeficiency Virus Type 1 , 1993 .

[17]  J Desmyter,et al.  Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. , 1988, Journal of virological methods.

[18]  G. Chang,et al.  Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics , 1990 .

[19]  Cheng Yung-Chi,et al.  HIV-1 reverse transcriptase inhibition by a dipyridodiazepinone derivative: BI-RG-587. , 1992 .

[20]  Garland R. Marshall,et al.  VALIDATE: A New Method for the Receptor-Based Prediction of Binding Affinities of Novel Ligands , 1996 .