Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: From solid fracture to granular behaviour and multiphase flows in porous media

Abstract We present the fundamental concepts of SPH with particular emphasis on its state-of-the-art applications in geomechanics and geotechnical engineering. In the first part of the paper, we focus on establishing fundamental SPH equations and discussing how they are used to solve partial differential equations (PDEs) in geomechanics. Through this process, we expect to provide readers with a better understanding of SPH formulations to avoid misuse or misinterpretation of its capacity and limitation. Discussions on several outstanding issues and recommendations for further developments are also be presented. Of particular interest through this revisit of the key SPH concepts is a new and robust SPH approximation formulation for the Laplacian, which involves the second-order derivatives of a field quantity. This new formulation is proven to outperform existing SPH formulations and achieve high accuracy. The second part of the paper focuses on demonstrating the applications of SPH in the fields of geomechanics and geotechnical engineering through various examples, ranging from the most fundamental to more complex applications involving multi-phase flows. We hope that this paper will become a useful resource to provide readers with a better understanding of SPH and its potential in solving complex problems in geomechanics and geotechnical engineering.

[1]  Larry D. Libersky,et al.  Smooth particle hydrodynamics with strength of materials , 1991 .

[2]  Bruce D. Jones,et al.  Mixed-mode fracture modeling with smoothed particle hydrodynamics , 2016 .

[3]  H. Huppert,et al.  Axisymmetric collapses of granular columns , 2004, Journal of Fluid Mechanics.

[4]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[5]  Majidreza Nazem,et al.  Arbitrary Lagrangian–Eulerian method for dynamic analysis of geotechnical problems , 2009 .

[6]  Wei Chen,et al.  Numerical Simulations for Large Deformation of Granular Materials Using Smoothed Particle Hydrodynamics Method , 2012 .

[7]  Giang D. Nguyen,et al.  A coupled damage–plasticity model for concrete based on thermodynamic principles: Part I: model formulation and parameter identification , 2008 .

[8]  S. M. Willson,et al.  Predictive modelling of structure evolution in sandbox experiments , 2006 .

[9]  G. Nguyen An Enriched Constitutive Model for Fracture Propagation Analysis Using the Material Point Method , 2013, 1311.3739.

[10]  Bingyin Zhang,et al.  A SPH framework for dynamic interaction between soil and rigid body system with hybrid contact method , 2020, International Journal for Numerical and Analytical Methods in Geomechanics.

[11]  H. Bui,et al.  SPH Simulation of Strain Localisation in Geomaterials Using a Visco-Plastic Constitutive Model , 2017 .

[12]  S. Pietruszczak,et al.  Fundamentals of Plasticity in Geomechanics , 2010 .

[13]  C. Ng,et al.  Numerical investigation of the mechanism of granular flow impact on rigid control structures , 2021, Acta Geotechnica.

[14]  Frédéric Dufour,et al.  Large deformation FEMLIP drained analysis of a vertical cut , 2012 .

[15]  Khoa M. Tran,et al.  Soil curling process and its influencing factors , 2020 .

[16]  A. Lyamin,et al.  Finite particle method for static deformation problems solved using JFNK method , 2020, Computers and Geotechnics.

[17]  Hans Muhlhaus,et al.  A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials , 2003 .

[18]  P. Ranjith,et al.  A Mesh-Free Continuum Based Computational Approach to Modelling Rock Fracture , 2017 .

[19]  R. P. Ingel,et al.  STRESS POINTS FOR TENSION INSTABILITY IN SPH , 1997 .

[20]  Numerical Simulation of Granular Materials Based on Smoothed Particle Hydrodynamics (SPH) , 2009 .

[21]  A. Sheikh,et al.  Localised failure mechanism as the basis for constitutive modelling of geomaterials , 2018, International Journal of Engineering Science.

[22]  H. Bui,et al.  Effects of material properties on the mobility of granular flow , 2020 .

[23]  Rade Vignjevic,et al.  SPH in a Total Lagrangian Formalism , 2006 .

[24]  Scott W. Sloan,et al.  Dynamic modelling of retrogressive landslides with emphasis on the role of clay sensitivity , 2018, International journal for numerical and analytical methods in geomechanics (Print).

[25]  P. Ranjith,et al.  Simulation of mixed‐mode fracture using SPH particles with an embedded fracture process zone , 2020, International Journal for Numerical and Analytical Methods in Geomechanics.

[26]  Nader A. Issa,et al.  Fluid motion generated by impact , 2003 .

[27]  Ha H. Bui,et al.  TWO-DIMENSIONAL NUMERICAL MODELLING OF MODULAR-BLOCK SOIL RETAINING WALLS COLLAPSE USING MESHFREE METHOD , 2013 .

[28]  Zhen Chen,et al.  Simulation of soil-concrete interfaces with nonlocal constitutive models , 1987 .

[29]  G. Nguyen,et al.  How to connect two scales of behaviour in constitutive modelling of geomaterials , 2012 .

[30]  Benedict D. Rogers,et al.  Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters , 2012, J. Parallel Distributed Comput..

[31]  Alberto Ledesma,et al.  Experimental and numerical analysis of desiccation of a mining waste , 2007 .

[32]  Giang D. Nguyen,et al.  A scalable parallel computing SPH framework for predictions of geophysical granular flows , 2020 .

[33]  David Le Touzé,et al.  On distributed memory MPI-based parallelization of SPH codes in massive HPC context , 2016, Comput. Phys. Commun..

[34]  P. W. Randles,et al.  Normalized SPH with stress points , 2000 .

[35]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[36]  H. Bui,et al.  Modelling 3D desiccation cracking in clayey soils using a size-dependent SPH computational approach , 2019 .

[37]  Yin-Fu Jin,et al.  Estimation of critical state-related formula in advanced constitutive modeling of granular material , 2017 .

[38]  Manuel Pastor,et al.  A stabilized Smoothed Particle Hydrodynamics, Taylor–Galerkin algorithm for soil dynamics problems , 2013 .

[39]  Bearing capacity of shallow foundation by Smoothed Particle Hydrodynamics (SPH) analysis , 2011 .

[40]  L. Brookshaw,et al.  A Method of Calculating Radiative Heat Diffusion in Particle Simulations , 1985, Publications of the Astronomical Society of Australia.

[41]  Ioannis Vardoulakis,et al.  A gradient flow theory of plasticity for granular materials , 1991 .

[42]  P. Ranjith,et al.  A new SPH-based continuum framework with an embedded fracture process zone for modelling rock fracture , 2019, International Journal of Solids and Structures.

[43]  Hirotaka Sakai,et al.  DEVELOPMENT OF SEEPAGE FAILURE ANALYSIS METHOD OF GROUND WITH SMOOTHED PARTICLE HYDRODYNAMICS , 2006 .

[44]  Nikolaus A. Adams,et al.  A multi-phase SPH method for macroscopic and mesoscopic flows , 2006, J. Comput. Phys..

[45]  Daniel J. Price,et al.  Variational principles for relativistic smoothed particle hydrodynamics , 2001 .

[46]  J. K. Chen,et al.  A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems , 2000 .

[47]  Xianjing Kong,et al.  Three-dimensional RITSS large displacement finite element method for penetration of foundations into soil , 2008 .

[48]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[49]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[50]  J. Monaghan SPH without a Tensile Instability , 2000 .

[51]  H. Bui,et al.  A Continuum Based Approach to Modelling Tensile Cracks in Soils , 2017 .

[52]  Majid T. Manzari,et al.  SIMPLE PLASTICITY SAND MODEL ACCOUNTING FOR FABRIC CHANGE EFFECTS , 2004 .

[53]  A. Sheikh,et al.  Incorporation of micro-cracking and fibre bridging mechanisms in constitutive modelling of fibre reinforced concrete , 2019 .

[54]  Dong Wang,et al.  Particle finite element analysis of large deformation and granular flow problems , 2013 .

[55]  Vinh Phu Nguyen,et al.  A size-dependent constitutive modelling framework for localised failure analysis , 2016 .

[56]  Ha H. Bui,et al.  Numerical modelling of laboratory soil desiccation cracking using UDEC with a mix-mode cohesive fracture model , 2016 .

[57]  H. Bui,et al.  Smoothed particle hydrodynamics for soil mechanics , 2006 .

[58]  Zdeněk P. Bažant,et al.  EFFECT OF FINITE ELEMENT CHOICE IN BLUNT CRACK BAND ANALYSIS , 1980 .

[59]  H. Bui,et al.  A generic approach to modelling flexible confined boundary conditions in SPH and its application , 2019, International Journal for Numerical and Analytical Methods in Geomechanics.

[60]  H. Jostad,et al.  Progressive failures in eastern Canadian and Scandinavian sensitive clays , 2011 .

[61]  Wei Wu,et al.  A SPH approach for large deformation analysis with hypoplastic constitutive model , 2015 .

[62]  Mike Jefferies,et al.  NOR-SAND: A SIMPLE CRITICAL STATE MODEL FOR SAND , 1993 .

[63]  G. Nguyen,et al.  A constitutive modelling framework featuring two scales of behaviour: Fundamentals and applications to quasi-brittle failure , 2014 .

[64]  Antonia,et al.  A coupled Eulerian-PFEM model for the simulation of overtopping in rockfill dams , 2012 .

[65]  Pieter A. Vermeer,et al.  Solution of quasi‐static large‐strain problems by the material point method , 2010 .

[66]  Olivier Pouliquen,et al.  A constitutive law for dense granular flows , 2006, Nature.

[67]  Osvaldo L. Manzoli,et al.  Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique , 2014 .

[68]  L. Minatti,et al.  A SPH model for the simulation of free surface granular flows in a dense regime , 2015 .

[69]  Yin‐Fu Jin,et al.  Simulating retrogressive slope failure using two different smoothed particle finite element methods: A comparative study , 2020 .

[70]  Ha H. Bui,et al.  Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model , 2008 .

[71]  Michael A. Hicks,et al.  Development of an implicit material point method for geotechnical applications , 2016 .

[72]  Bingyin Zhang,et al.  Three-dimensional modeling of granular flow impact on rigid and deformable structures , 2019, Computers and Geotechnics.

[73]  J. K. Chen,et al.  A corrective smoothed particle method for boundary value problems in heat conduction , 1999 .

[74]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[75]  H. Bui,et al.  A coupled fluid-solid SPH approach to modelling flow through deformable porous media , 2017 .

[76]  P. W. Randles,et al.  Calculation of oblique impact and fracture of tungsten cubes using smoothed particle hydrodynamics , 1995 .

[77]  Kenichi Soga,et al.  Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method , 2016 .

[78]  Howard L. Schreyer,et al.  Bifurcations in elastic-plastic materials , 1993 .

[79]  Zdenek P. Bazant,et al.  Why Continuum Damage is Nonlocal: Micromechanics Arguments , 1991 .

[80]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[81]  Cuong T. Nguyen,et al.  A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation , 2017, Landslides.

[82]  H. Bui,et al.  Explicit incompressible SPH algorithm for free-surface flow modelling: A comparison with weakly compressible schemes , 2016 .

[83]  J. Monaghan,et al.  Shock simulation by the particle method SPH , 1983 .

[84]  Ha H. Bui,et al.  Seismic slope failure modelling using the mesh-free SPH method , 2013 .

[85]  J. Monaghan,et al.  A simulation of the collapse and fragmentation of cooling molecular clouds , 1991 .

[86]  T. Qiu,et al.  Comparison of SPH boundary approaches in simulating frictional soil–structure interaction , 2020, Acta Geotechnica.

[87]  Nikolaus A. Adams,et al.  An incompressible multi-phase SPH method , 2007, J. Comput. Phys..

[88]  Sheng-Qi Yang,et al.  Peridynamic simulation on fracture mechanical behavior of granite containing a single fissure after thermal cycling treatment , 2020 .

[89]  Alomir H. Fávero Neto,et al.  Continuum hydrodynamics of dry granular flows employing multiplicative elastoplasticity , 2018, Acta Geotechnica.

[90]  Tao Wang,et al.  Static and dynamic tensile failure characteristics of rock based on splitting test of circular ring , 2016 .

[91]  Xiaolong Deng,et al.  An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids , 2016, Comput. Phys. Commun..

[92]  J. Andrade,et al.  Continuum modeling of rate-dependent granular flows in SPH , 2017 .

[93]  C. Nguyen,et al.  Constitutive modelling of progressive localised failure in porous sandstones under shearing at high confining pressures , 2017 .

[94]  S. Attaway,et al.  Smoothed particle hydrodynamics stability analysis , 1995 .

[95]  H. Bui,et al.  Localised failure of geomaterials: how to extract localisation band behaviour from macro test data , 2021, Géotechnique.

[96]  J. Wells,et al.  Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH) , 2011 .

[97]  H. Bui,et al.  A thermodynamics- and mechanism-based framework for constitutive models with evolving thickness of localisation band , 2020 .

[98]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[99]  J. Monaghan Theory and Applications of Smoothed Particle Hydrodynamics , 2005 .

[100]  Eugenio Oñate,et al.  Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows , 2008 .

[101]  S. Miyama,et al.  Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics , 1994 .

[102]  M. Pastor,et al.  A depth‐integrated, coupled SPH model for flow‐like landslides and related phenomena , 2009 .

[103]  Jian Wang,et al.  Frictional contact algorithms in SPH for the simulation of soil–structure interaction , 2014 .

[104]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[105]  Ha H. Bui,et al.  An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: Case of hydrostatic pore‐water pressure , 2013 .

[106]  Antonio Gens,et al.  Numerical simulation of undrained insertion problems in geotechnical engineering with the Particle Finite Element Method (PFEM) , 2017 .

[107]  John C. Wells,et al.  SPH-based numerical simulations for large deformation of geomaterial considering soil-structure interaction , 2008 .

[108]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[110]  M. Bolton THE STRENGTH AND DILATANCY OF SANDS , 1986 .

[111]  Daniel J. Price Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..

[113]  Atsushi Yashima,et al.  Slope stability analysis using smoothed particle hydrodynamics (SPH) method , 2015 .

[114]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[115]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[116]  Michael A. Hicks,et al.  Investigation of retrogressive and progressive slope failure mechanisms using the material point method , 2016 .

[117]  A. Sheikh,et al.  Modelling jointed rock mass as a continuum with an embedded cohesive-frictional model , 2017 .

[118]  D W Hobbs,et al.  An assessment of a technique for determining the tensile strength of rock , 1965 .

[119]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[120]  K. Soga,et al.  Numerical modeling of combined effects of upward and downward propagation of shear bands on stability of slopes with sensitive clay , 2016 .

[121]  Ha H. Bui,et al.  A novel computational approach for large deformation and post‐failure analyses of segmental retaining wall systems , 2014 .

[122]  Jerzy Pamin,et al.  Gradient plasticity in numerical simulation of concrete cracking , 1996 .

[123]  R. Borja Plasticity: Modeling & Computation , 2013 .

[124]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[125]  Siamak Kazemzadeh Hannani,et al.  A fully explicit three‐step SPH algorithm for simulation of non‐Newtonian fluid flow , 2007 .

[126]  Antonio Huerta,et al.  Stabilized updated Lagrangian corrected SPH for explicit dynamic problems , 2007 .

[127]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[128]  Guirong Liu,et al.  Modeling incompressible flows using a finite particle method , 2005 .

[129]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[130]  M. Pastor,et al.  A stabilized Fractional Step, Runge–Kutta Taylor SPH algorithm for coupled problems in geomechanics , 2012 .

[131]  T. Pipatpongsa,et al.  Experimental realization of incipient active failure in sand heap by seismic loading , 2020 .

[132]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[133]  Ha H. Bui,et al.  Numerical simulation of soil-water interaction using smoothed particle hydrodynamics (SPH) method , 2007 .

[134]  Jidong Zhao,et al.  Peridynamic modelling of blasting induced rock fractures , 2021, Journal of the Mechanics and Physics of Solids.

[135]  W. Dehnen,et al.  Improving convergence in smoothed particle hydrodynamics simulations without pairing instability , 2012, 1204.2471.

[136]  Eduardo Alonso,et al.  Progressive failure of Aznalcóllar dam using the material point method , 2011 .

[137]  Jürgen Grabe,et al.  Application of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations , 2011 .

[138]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[139]  Chuangbing Zhou,et al.  Numerical simulation of desiccation cracking in a thin clay layer using 3D discrete element modeling , 2014 .

[140]  Lagrangian mesh-free particle method (SPH) for large deformation and post-failure of geomaterial using elasto-plastic constitutive models , 2007 .