The structure of the ubiquitin-like modifier FAT10 reveals an alternative targeting mechanism for proteasomal degradation

[1]  R. Deshaies,et al.  Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP•NPLOC4•UFD1L is enhanced by a mutation that causes multisystem proteinopathy , 2017, Proceedings of the National Academy of Sciences.

[2]  M. Groettrup,et al.  The ubiquitin-like modifier FAT10 in cancer development. , 2016, The international journal of biochemistry & cell biology.

[3]  Klaus Schulten,et al.  Structure of the human 26S proteasome at a resolution of 3.9 Å , 2016, Proceedings of the National Academy of Sciences.

[4]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[5]  Joo-Yeon Yoo,et al.  Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform , 2016, Scientific Reports.

[6]  J. Weissman,et al.  Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis. , 2015, Cancer cell.

[7]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[8]  Francesco P. Marchese,et al.  Cdc48-independent proteasomal degradation coincides with a reduced need for ubiquitylation , 2015, Scientific Reports.

[9]  C. Chan,et al.  Disruption of FAT10–MAD2 binding inhibits tumor progression , 2014, Proceedings of the National Academy of Sciences.

[10]  Yongwook Choi,et al.  NFκB and STAT3 synergistically activate the expression of FAT10, a gene counteracting the tumor suppressor p53 , 2014, Molecular oncology.

[11]  M. Groettrup,et al.  Investigations into the auto‐FAT10ylation of the bispecific E2 conjugating enzyme UBA6‐specific E2 enzyme 1 , 2014, The FEBS journal.

[12]  F. Melchior,et al.  Identification and analysis of endogenous SUMO1 and SUMO2/3 targets in mammalian cells and tissues using monoclonal antibodies , 2014, Nature Protocols.

[13]  A. Isacchi,et al.  Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. , 2013, Nature chemical biology.

[14]  Andreas Martin,et al.  Conformational switching of the 26S proteasome enables substrate degradation , 2013, Nature Structural &Molecular Biology.

[15]  M. Kirschner,et al.  Profiling of Ubiquitin-like Modifications Reveals Features of Mitotic Control , 2013, Cell.

[16]  A. Ciechanover,et al.  Modification of the inflammatory mediator LRRFIP2 by the ubiquitin-like protein FAT10 inhibits its activity during cellular response to LPS. , 2012, Biochemical and biophysical research communications.

[17]  T. Johansen,et al.  The proteomic analysis of endogenous FAT10 substrates identifies p62/SQSTM1 as a substrate of FAT10ylation , 2012, Journal of Cell Science.

[18]  M. van den Broek,et al.  Stable Antigen Is Most Effective for Eliciting CD8+ T-Cell Responses after DNA Vaccination and Infection with Recombinant Vaccinia Virus In Vivo , 2012, Journal of Virology.

[19]  P. Kloetzel,et al.  The FAT10- and ubiquitin-dependent degradation machineries exhibit common and distinct requirements for MHC class I antigen presentation , 2012, Cellular and Molecular Life Sciences.

[20]  P. Kloetzel,et al.  The FAT10- and ubiquitin-dependent degradation machineries exhibit common and distinct requirements for MHC class I antigen presentation , 2012, Cellular and Molecular Life Sciences.

[21]  M. Bug,et al.  Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system , 2012, Nature Cell Biology.

[22]  S. Kreft,et al.  FAT10 and NUB1L bind to the VWA domain of Rpn10 and Rpn1 to enable proteasome-mediated proteolysis , 2012, Nature Communications.

[23]  M. Mann,et al.  Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. , 2011, Journal of proteome research.

[24]  Andreas P. Eichenberger,et al.  Definition and testing of the GROMOS force-field versions 54A7 and 54B7 , 2011, European Biophysics Journal.

[25]  P. Sheppard,et al.  USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10, which FAT10ylates itself in cis. , 2010, Nature communications.

[26]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[27]  W. Kabsch XDS , 2010, Acta crystallographica. Section D, Biological crystallography.

[28]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[29]  M. Groettrup,et al.  Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L , 2009, FEBS letters.

[30]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[31]  P. Schirmacher,et al.  Proinflammatory cytokines cause FAT10 upregulation in cancers of liver and colon , 2008, Oncogene.

[32]  K. Hofmann,et al.  Activating the ubiquitin family: UBA6 challenges the field. , 2008, Trends in biochemical sciences.

[33]  Zhijian J. Chen,et al.  E1-L2 activates both ubiquitin and FAT10. , 2007, Molecular cell.

[34]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[35]  R. Singh,et al.  UBE1L2, a Novel E1 Enzyme Specific for Ubiquitin*♦ , 2007, Journal of Biological Chemistry.

[36]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[37]  S. Gygi,et al.  Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging , 2007, Nature.

[38]  J. Cole,et al.  Defining how ubiquitin receptors hHR23a and S5a bind polyubiquitin. , 2007, Journal of molecular biology.

[39]  M. Hipp,et al.  The UBA Domains of NUB1L Are Required for Binding but Not for Accelerated Degradation of the Ubiquitin-like Modifier FAT10* , 2006, Journal of Biological Chemistry.

[40]  M. Hipp,et al.  FAT10, a Ubiquitin-Independent Signal for Proteasomal Degradation , 2005, Molecular and Cellular Biology.

[41]  M. Hipp,et al.  NEDD8 Ultimate Buster-1L Interacts with the Ubiquitin-like Protein FAT10 and Accelerates Its Degradation* , 2004, Journal of Biological Chemistry.

[42]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[43]  Shandar Ahmad,et al.  ASAView: Database and tool for solvent accessibility representation in proteins , 2003, BMC Bioinformatics.

[44]  M. Choti,et al.  Expression of the FAT10 gene is highly upregulated in hepatocellular carcinoma and other gastrointestinal and gynecological cancers , 2003, Oncogene.

[45]  M. Groettrup,et al.  A ubiquitin‐like protein which is synergistically inducible by interferon‐γ and tumor necrosis factor‐α , 1999, European journal of immunology.

[46]  H. Kessler,et al.  An efficient strategy for assignment of cross-peaks in 3D heteronuclear NOESY experiments , 1999, Journal of biomolecular NMR.

[47]  S. Weissman,et al.  A MHC-encoded ubiquitin-like protein (FAT10) binds noncovalently to the spindle assembly checkpoint protein MAD2. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Christian Griesinger,et al.  Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients , 1999 .

[49]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[50]  Michael Nilges,et al.  Ambiguous NOEs and automated NOE assignment , 1998 .

[51]  C. Pickart,et al.  The hydrophobic effect contributes to polyubiquitin chain recognition. , 1998, Biochemistry.

[52]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[53]  Q. Deveraux,et al.  Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[55]  K Wüthrich,et al.  The program XEASY for computer-supported NMR spectral analysis of biological macromolecules , 1995, Journal of biomolecular NMR.

[56]  T. Pawson,et al.  Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. , 1994, Biochemistry.

[57]  C. Bugg,et al.  Structure of ubiquitin refined at 1.8 A resolution. , 1987, Journal of molecular biology.