Adaptive Multilevel Correction Method for Finite Element Approximations of Elliptic Optimal Control Problems

In this paper we propose an adaptive multilevel correction scheme to solve optimal control problems discretized with finite element method. Different from the classical adaptive finite element method (AFEM for short) applied to optimal control which requires the solution of the optimization problem on new finite element space after each mesh refinement, with our approach we only need to solve two linear boundary value problems on current refined mesh and an optimization problem on a very low dimensional space. The linear boundary value problems can be solved with well-established multigrid method designed for elliptic equation and the optimization problems are of small scale corresponding to the space built with the coarsest space plus two enriched bases. Our approach can achieve the similar accuracy with standard AFEM but greatly reduces the computational cost. Numerical experiments demonstrate the efficiency of our proposed algorithm.

[1]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[2]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[3]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[4]  Hehu Xie,et al.  A Multilevel Correction Type of Adaptive Finite Element Method for Eigenvalue Problems , 2012, SIAM J. Sci. Comput..

[5]  Hehu Xie,et al.  A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..

[6]  Wenbin Liu,et al.  Adaptive Finite Element Methods for Optimal Control Governed by PDEs: C Series in Information and Computational Science 41 , 2008 .

[7]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[8]  Ronald H. W. Hoppe,et al.  Convergence Analysis of an Adaptive Finite Element Method for Distributed Control Problems with Control Constraints , 2007 .

[9]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[10]  Xiaoying Dai,et al.  Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues , 2012, 1210.1846.

[11]  Jinchao Xu,et al.  Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .

[12]  Alfio Borzì,et al.  Multigrid Methods for PDE Optimization , 2009, SIAM Rev..

[13]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[14]  Ningning Yan,et al.  A posteriori error estimates for control problems governed by nonlinear elliptic equations , 2003 .

[15]  Michael Hinze,et al.  Discrete Concepts in PDE Constrained Optimization , 2009 .

[16]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[17]  Q. Lin,et al.  A MULTILEVEL CORRECTION TYPE OF ADAPTIVE FINITE ELEMENT METHOD FOR STEKLOV EIGENVALUE PROBLEMS , 2012 .

[18]  Wei Gong,et al.  Adaptive finite element method for elliptic optimal control problems: convergence and optimality , 2015, Numerische Mathematik.

[19]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[20]  A. Zhou MULTI-LEVEL ADAPTIVE CORRECTIONS IN FINITE DIMENSIONAL APPROXIMATIONS , 2009 .

[21]  Hehu Xie,et al.  A full multigrid method for eigenvalue problems , 2014, J. Comput. Phys..

[22]  Hehu Xie,et al.  A Multilevel Correction Method for Optimal Controls of Elliptic Equations , 2014, SIAM J. Sci. Comput..

[23]  Michael Hintermüller,et al.  AN A POSTERIORI ERROR ANALYSIS OF ADAPTIVE FINITE ELEMENT METHODS FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS WITH CONTROL CONSTRAINTS , 2008 .

[24]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[25]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[26]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..

[27]  Arnd Rösch,et al.  Optimal control in non-convex domains: a priori discretization error estimates , 2007 .

[28]  Wenbin Liu,et al.  A Posteriori Error Estimates for Convex Boundary Control Problems , 2001, SIAM J. Numer. Anal..

[29]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[30]  Wenbin Liu,et al.  Local A Posteriori Error Estimates for Convex Boundary Control Problems , 2009, SIAM J. Numer. Anal..

[31]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[32]  Hehu Xie,et al.  A type of multilevel method for the Steklov eigenvalue problem , 2014 .

[33]  Kunibert G. Siebert,et al.  A Posteriori Error Analysis of Optimal Control Problems with Control Constraints , 2014, SIAM J. Control. Optim..

[34]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[35]  Stephen G. Nash,et al.  Model Problems for the Multigrid Optimization of Systems Governed by Differential Equations , 2005, SIAM J. Sci. Comput..