Adaptive Multilevel Correction Method for Finite Element Approximations of Elliptic Optimal Control Problems
暂无分享,去创建一个
[1] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[2] Michael Hinze,et al. A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..
[3] Ruo Li,et al. Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..
[4] Hehu Xie,et al. A Multilevel Correction Type of Adaptive Finite Element Method for Eigenvalue Problems , 2012, SIAM J. Sci. Comput..
[5] Hehu Xie,et al. A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..
[6] Wenbin Liu,et al. Adaptive Finite Element Methods for Optimal Control Governed by PDEs: C Series in Information and Computational Science 41 , 2008 .
[7] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[8] Ronald H. W. Hoppe,et al. Convergence Analysis of an Adaptive Finite Element Method for Distributed Control Problems with Control Constraints , 2007 .
[9] Jinchao Xu,et al. A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..
[10] Xiaoying Dai,et al. Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues , 2012, 1210.1846.
[11] Jinchao Xu,et al. Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .
[12] Alfio Borzì,et al. Multigrid Methods for PDE Optimization , 2009, SIAM Rev..
[13] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[14] Ningning Yan,et al. A posteriori error estimates for control problems governed by nonlinear elliptic equations , 2003 .
[15] Michael Hinze,et al. Discrete Concepts in PDE Constrained Optimization , 2009 .
[16] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[17] Q. Lin,et al. A MULTILEVEL CORRECTION TYPE OF ADAPTIVE FINITE ELEMENT METHOD FOR STEKLOV EIGENVALUE PROBLEMS , 2012 .
[18] Wei Gong,et al. Adaptive finite element method for elliptic optimal control problems: convergence and optimality , 2015, Numerische Mathematik.
[19] J. Lions. Optimal Control of Systems Governed by Partial Differential Equations , 1971 .
[20] A. Zhou. MULTI-LEVEL ADAPTIVE CORRECTIONS IN FINITE DIMENSIONAL APPROXIMATIONS , 2009 .
[21] Hehu Xie,et al. A full multigrid method for eigenvalue problems , 2014, J. Comput. Phys..
[22] Hehu Xie,et al. A Multilevel Correction Method for Optimal Controls of Elliptic Equations , 2014, SIAM J. Sci. Comput..
[23] Michael Hintermüller,et al. AN A POSTERIORI ERROR ANALYSIS OF ADAPTIVE FINITE ELEMENT METHODS FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS WITH CONTROL CONSTRAINTS , 2008 .
[24] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[25] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[26] Wenbin Liu,et al. A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..
[27] Arnd Rösch,et al. Optimal control in non-convex domains: a priori discretization error estimates , 2007 .
[28] Wenbin Liu,et al. A Posteriori Error Estimates for Convex Boundary Control Problems , 2001, SIAM J. Numer. Anal..
[29] Rolf Rannacher,et al. Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..
[30] Wenbin Liu,et al. Local A Posteriori Error Estimates for Convex Boundary Control Problems , 2009, SIAM J. Numer. Anal..
[31] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[32] Hehu Xie,et al. A type of multilevel method for the Steklov eigenvalue problem , 2014 .
[33] Kunibert G. Siebert,et al. A Posteriori Error Analysis of Optimal Control Problems with Control Constraints , 2014, SIAM J. Control. Optim..
[34] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[35] Stephen G. Nash,et al. Model Problems for the Multigrid Optimization of Systems Governed by Differential Equations , 2005, SIAM J. Sci. Comput..