Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids)

In the last decade, a number of investigations have been conducted to identify the possible mechanisms that contribute to the enhanced effective thermal conductivity of nanoparticle suspensions (nanofluids). The Brownian motion of the nanoparticles in these suspensions is one of the potential contributors to this enhancement and the mechanisms that might contribute to this are the subject of considerable discussion and debate. In the current investigation, the mixing effect of the base fluid in the immediate vicinity of the nanoparticles caused by the Brownian motion was analyzed, modeled and compared with existing experimental data available in the literature. The simulation results indicate that this mixing effect can have a significant influence on the effective thermal conductivity of nanofluids.

[1]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[2]  D. Hasselman,et al.  Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance , 1987 .

[3]  R. Prasher,et al.  Thermal conductivity of nanoscale colloidal solutions (nanofluids). , 2005, Physical review letters.

[4]  Xiaofeng Peng,et al.  Research on the heat-conduction enhancement for liquid with nano-particle suspensions , 2002 .

[5]  Joseph B. Keller,et al.  Conductivity of a Medium Containing a Dense Array of Perfectly Conducting Spheres or Cylinders or Nonconducting Cylinders , 1963 .

[6]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[7]  Tae-Keun Hong,et al.  Study of the enhanced thermal conductivity of Fe nanofluids , 2005 .

[8]  A. Acrivos,et al.  ON THE EFFECTIVE THERMAL CONDUCTIVITY OF DILUTE DISPERSIONS GENERAL THEORY FOR INCLUSIONS OF ARBITRARY SHAPE , 1973 .

[9]  S. Advani,et al.  Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension , 1995 .

[10]  Effective conductivity of composites containing spheroidal inclusions: Comparison of simulations with theory , 1993 .

[11]  Peter Holmqvist,et al.  Many-body hydrodynamic interactions in charge-stabilized suspensions. , 2006, Physical review letters.

[12]  J. Eastman,et al.  Enhanced thermal conductivity through the development of nanofluids , 1996 .

[13]  Huaqing Xie,et al.  Thermal conductivity enhancement of suspensions containing nanosized alumina particles , 2002 .

[14]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[15]  Stephen U. S. Choi,et al.  Application of metallic nanoparticle suspensions in advanced cooling systems , 1996 .

[16]  R. Prasher,et al.  Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids , 2004 .

[17]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[18]  G. Batchelor,et al.  Brownian diffusion of particles with hydrodynamic interaction , 1976, Journal of Fluid Mechanics.

[19]  Shih-Yuan Lu,et al.  Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity , 1996 .

[20]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[21]  Sarit K. Das,et al.  Model for heat conduction in nanofluids. , 2004, Physical review letters.

[22]  R. Prasher,et al.  Enhanced mass transport in nanofluids. , 2006, Nano letters.

[23]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[24]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[25]  H. Fricke,et al.  A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids , 1924 .

[26]  Minoru Taya,et al.  Effective thermal conductivity of a misoriented short fiber composite , 1985 .

[27]  G. Batchelor,et al.  Transport Properties of Two-Phase Materials with Random Structure , 1974 .

[28]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[29]  Tae-Keun Hong,et al.  Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles , 2006 .

[30]  G. Peterson,et al.  Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2006 .

[31]  Shih‐Yuan Lu,et al.  Effective thermal conductivity of composites containing spheroidal inclusions , 1990 .

[32]  John F. Brady,et al.  Microstructure of strongly sheared suspensions and its impact on rheology and diffusion , 1997, Journal of Fluid Mechanics.

[33]  H. Versmold,et al.  Brownian motion : A tool to determine the pair potential between colloid particles , 1994 .

[34]  Dieterich J. Schuring,et al.  Scale models in engineering , 1977 .

[35]  Sarit K. Das,et al.  Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects , 2003 .

[36]  J. Fish,et al.  Role of Brownian motion hydrodynamics on nanofluid thermal conductivity , 2006 .

[37]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .

[38]  L. G. Leal,et al.  ON THE EFFECTIVE CONDUCTIVITY OF A DILUTE SUSPENSION OF SPHERICAL DROPS IN THE LIMIT OF LOW PARTICLE PECLET NUMBER , 1973 .

[39]  J. Brady,et al.  The effective conductivity of random suspensions of spherical particles , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[40]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[41]  J. Brady,et al.  Dynamic simulation of hydrodynamically interacting suspensions , 1988, Journal of Fluid Mechanics.

[42]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[43]  Robert H. Davis The effective thermal conductivity of a composite material with spherical inclusions , 1986 .

[44]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[45]  J. P. Hartnett,et al.  Advances in Heat Transfer , 2003 .

[46]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[47]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[48]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[49]  Roger T. Bonnecaze,et al.  A method for determining the effective conductivity of dispersions of particles , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[50]  R. W. O'Brien,et al.  A method for the calculation of the effective transport properties of suspensions of interacting particles , 1979, Journal of Fluid Mechanics.

[51]  J. Brady The rheological behavior of concentrated colloidal dispersions , 1993 .

[52]  G. Peterson,et al.  The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids , 2007 .

[53]  A. Acrivos,et al.  ON THE EFFECTIVE THERMAL CONDUCTIVITY OF DILUTE DISPERSIONS: HIGHLY CONDUCTING INCLUSIONS OF ARBITRARY SHAPE , 1973 .

[54]  Fei Ai,et al.  Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid , 2002 .