Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms

Hereditary spastic paraplegia (HSP) is a syndrome designation describing inherited disorders in which lower extremity weakness and spasticity are the predominant symptoms. There are more than 50 genetic types of HSP. HSP affects individuals of diverse ethnic groups with prevalence estimates ranging from 1.2 to 9.6 per 100,000. Symptoms may begin at any age. Gait impairment that begins after childhood usually worsens very slowly over many years. Gait impairment that begins in infancy and early childhood may not worsen significantly. Postmortem studies consistently identify degeneration of corticospinal tract axons (maximal in the thoracic spinal cord) and degeneration of fasciculus gracilis fibers (maximal in the cervico-medullary region). HSP syndromes thus appear to involve motor-sensory axon degeneration affecting predominantly (but not exclusively) the distal ends of long central nervous system (CNS) axons. In general, proteins encoded by HSP genes have diverse functions including (1) axon transport (e.g. SPG30/KIF1A, SPG10/KIF5A and possibly SPG4/Spastin); (2) endoplasmic reticulum morphology (e.g. SPG3A/Atlastin, SPG4/Spastin, SPG12/reticulon 2, and SPG31/REEP1, all of which interact); (3) mitochondrial function (e.g. SPG13/chaperonin 60/heat-shock protein 60, SPG7/paraplegin; and mitochondrial ATP6); (4) myelin formation (e.g. SPG2/Proteolipid protein and SPG42/Connexin 47); (5) protein folding and ER-stress response (SPG6/NIPA1, SPG8/K1AA0196 (Strumpellin), SGP17/BSCL2 (Seipin), “mutilating sensory neuropathy with spastic paraplegia” owing to CcT5 mutation and presumably SPG18/ERLIN2); (6) corticospinal tract and other neurodevelopment (e.g. SPG1/L1 cell adhesion molecule and SPG22/thyroid transporter MCT8); (7) fatty acid and phospholipid metabolism (e.g. SPG28/DDHD1, SPG35/FA2H, SPG39/NTE, SPG54/DDHD2, and SPG56/CYP2U1); and (8) endosome membrane trafficking and vesicle formation (e.g. SPG47/AP4B1, SPG48/KIAA0415, SPG50/AP4M1, SPG51/AP4E, SPG52/AP4S1, and VSPG53/VPS37A). The availability of animal models (including bovine, murine, zebrafish, Drosophila, and C. elegans) for many types of HSP permits exploration of disease mechanisms and potential treatments. This review highlights emerging concepts of this large group of clinically similar disorders.

[1]  R. Lothe,et al.  SPG20, a novel biomarker for early detection of colorectal cancer, encodes a regulator of cytokinesis , 2011, Oncogene.

[2]  Pask Ea,et al.  HOMOSEXUALITY AS A CRIME. , 1965 .

[3]  A. Harding CLASSIFICATION OF THE HEREDITARY ATAXIAS AND PARAPLEGIAS , 1983, The Lancet.

[4]  J. Finsterer,et al.  Novel crystalloid oligodendrogliopathy in hereditary spastic paraplegia , 2012, Acta Neuropathologica.

[5]  E. Rugarli,et al.  Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. , 2004, The Journal of clinical investigation.

[6]  P. Byrne,et al.  Identification of novel spartin‐interactors shows spartin is a multifunctional protein , 2009, Journal of neurochemistry.

[7]  C. Bendixen,et al.  Congenital bovine spinal dysmyelination is caused by a missense mutation in the SPAST gene , 2009, neurogenetics.

[8]  C. Blackstone,et al.  Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I. , 2011, American journal of human genetics.

[9]  C. Blackstone,et al.  Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. , 2008, Human molecular genetics.

[10]  R. Richardson,et al.  SUBCELLULAR DISTRIBUTION OF MARKER ENZYMES AND OF NEUROTOXIC ESTERASE IN ADULT HEN BRAIN 1 , 1979, Journal of neurochemistry.

[11]  P. Glynn,et al.  Neuropathy target esterase. , 1999, The Biochemical journal.

[12]  D. Rubinsztein,et al.  A new locus for autosomal dominant "pure" hereditary spastic paraplegia mapping to chromosome 12q13, and evidence for further genetic heterogeneity. , 1999, American journal of human genetics.

[13]  A. Schapira,et al.  A clinical and genetic study of SPG5A linked autosomal recessive hereditary spastic paraplegia , 2003, Neurology.

[14]  G. Rouleau,et al.  A novel locus for pure recessive hereditary spastic paraplegia maps to 10q22.1‐10q24.1 , 2004, Annals of neurology.

[15]  M. Esiri,et al.  The extent of axonal loss in the long tracts in hereditary spastic paraplegia , 2004, Neuropathology and applied neurobiology.

[16]  H. Kurahashi,et al.  Segregation of a pure form of spastic paraplegia and NOR insertion into Xq11.2. , 2000, American journal of medical genetics.

[17]  J. Casida,et al.  Cellular function of neuropathy target esterase in lysophosphatidylcholine action. , 2008, Toxicology and applied pharmacology.

[18]  Y. Hashizume,et al.  Autopsy case of hereditary spastic paraplegia with thin corpus callosum showing severe gliosis in the cerebral white matter , 2005, Neuropathology (Kyoto. 1993).

[19]  S. Lidén,et al.  Ichthyosis in the Sjögren‐Larsson syndrome , 1982, Clinical genetics.

[20]  H. Stenmark,et al.  Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. , 2001, The Biochemical journal.

[21]  S. Wharton,et al.  Direct evidence for axonal transport defects in a novel mouse model of mutant spastin‐induced hereditary spastic paraplegia (HSP) and human HSP patients , 2009, Journal of neurochemistry.

[22]  N. Bouslam,et al.  Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia , 2005, Journal of Medical Genetics.

[23]  R. Stevenson,et al.  Allan-Herndon-Dudley syndrome: clinical and linkage studies on a second family. , 1992, American journal of medical genetics.

[24]  D. Kretzschmar,et al.  Swiss Cheese, a Protein Involved in Progressive Neurodegeneration, Acts as a Noncanonical Regulatory Subunit for PKA-C3 , 2008, The Journal of Neuroscience.

[25]  R. Richardson,et al.  Evidence for the existence of neurotoxic esterase in neural and lymphatic tissue of the adult hen. , 1982, Biochemical pharmacology.

[26]  A. Bizzi,et al.  Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. , 2009, Brain : a journal of neurology.

[27]  M. Pericak-Vance,et al.  Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. , 2012, The Journal of clinical investigation.

[28]  Sergio Cocozza,et al.  Spastic Paraplegia and OXPHOS Impairment Caused by Mutations in Paraplegin, a Nuclear-Encoded Mitochondrial Metalloprotease , 1998, Cell.

[29]  P. Steinert,et al.  Sjögren–Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene , 1996, Nature Genetics.

[30]  M. Armani,et al.  Genetic mapping of a susceptibility locus for disc herniation and spastic paraplegia on 6q23.3-q24.1 , 2002, Journal of medical genetics.

[31]  B. P. Van de Warrenburg,et al.  Child Neurology: Hereditary spastic paraplegia in children , 2010, Neurology.

[32]  S. Todorović,et al.  [The Troyer syndrome]. , 1993, Vojnosanitetski pregled.

[33]  M. Robinson,et al.  Characterization of a fourth adaptor-related protein complex. , 1999, Molecular biology of the cell.

[34]  M. Kruhøffer,et al.  The Hsp60-(p.V98I) Mutation Associated with Hereditary Spastic Paraplegia SPG13 Compromises Chaperonin Function Both in Vitro and in Vivo* , 2008, Journal of Biological Chemistry.

[35]  Rachel Levy,et al.  PLA2G6 mutation underlies infantile neuroaxonal dystrophy. , 2006, American journal of human genetics.

[36]  S. Hanein,et al.  A novel locus for autosomal dominant “uncomplicated” hereditary spastic paraplegia maps to chromosome 8p21.1-q13.3 , 2007, Human Genetics.

[37]  C. Broeckhoven,et al.  A novel locus for hereditary spastic paraplegia with thin corpus callosum and epilepsy , 2006, Neurology.

[38]  P. Bauer,et al.  Autosomal dominant spastic paraplegia with peripheral neuropathy maps to chr12q23-24 , 2009, Neurology.

[39]  J. Fink,et al.  CHAPTER L2 – Hereditary Spastic Paraplegia: Clinical Features and Animal Models , 2005 .

[40]  C. Woods,et al.  A gene for autosomal recessive symmetrical spastic cerebral palsy maps to chromosome 2q24-25. , 1999, American journal of human genetics.

[41]  S. Blumen,et al.  A locus for complicated hereditary spastic paraplegia maps to chromosome 1q24‐q32 , 2003, Annals of neurology.

[42]  M. Nöthen,et al.  Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. , 2011, American journal of human genetics.

[43]  J. Weissenbach,et al.  Phenotype of autosomal dominant spastic paraplegia linked to chromosome 2. , 1996, Brain : a journal of neurology.

[44]  M. Leppert,et al.  Autosomal dominant, familial spastic paraplegia, type I , 1995, Neurology.

[45]  S. Bundey,et al.  Symmetry of neurological signs in Pakistani patients with probable inherited spastic cerebral palsy , 1997, Clinical genetics.

[46]  A. Durr,et al.  Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. , 2008, American journal of human genetics.

[47]  G. Casari,et al.  Haploinsufficiency of AFG3L2, the Gene Responsible for Spinocerebellar Ataxia Type 28, Causes Mitochondria-Mediated Purkinje Cell Dark Degeneration , 2009, The Journal of Neuroscience.

[48]  D. Geiger,et al.  A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis , 2012, Journal of Medical Genetics.

[49]  J. Bodensteiner,et al.  Childhood-Onset Spastic Paraplegia With NIPA1 Gene Mutation , 2006, Journal of child neurology.

[50]  C. Barlowe Atlasin GTPases shape up ER networks. , 2009, Developmental cell.

[51]  D. Zélénika,et al.  A new locus (SPG46) maps to 9p21.2-q21.12 in a Tunisian family with a complicated autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum , 2010, neurogenetics.

[52]  F. Alkuraya,et al.  Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. , 2011, American journal of human genetics.

[53]  J. Petersen,et al.  KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons , 2011, Neuroscience Letters.

[54]  J. Fink,et al.  De novo occurrence of novel SPG3A/atlastin mutation presenting as cerebral palsy. , 2006, Archives of neurology.

[55]  C. Chothia,et al.  Outline structure of the human L1 cell adhesion molecule and the sites where mutations cause neurological disorders. , 1996, The EMBO journal.

[56]  K. Claeys,et al.  Hereditary spastic paraplegia 3A associated with axonal neuropathy. , 2007, Archives of neurology.

[57]  C. Woods,et al.  Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders , 2004, BMC neurology.

[58]  A. Shekhtman,et al.  Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets , 2010, BMC Biology.

[59]  L. Rosenbloom,et al.  Familial cerebral palsy associated with normal intelligence. , 1986, Postgraduate medical journal.

[60]  P. Glynn,et al.  CHAPTER 47 – Neuropathy Target Esterase , 2001 .

[61]  M. Devoto,et al.  Genetic mapping to 10q23.3-q24.2, in a large Italian pedigree, of a new syndrome showing bilateral cataracts, gastroesophageal reflux, and spastic paraparesis with amyotrophy. , 1999, American journal of human genetics.

[62]  A. Tessa,et al.  White matter lesions in spastic paraplegia with mutations in SPG5/CYP7B1 , 2009, Neuromuscular Disorders.

[63]  J. Zhang,et al.  Identification of a new form of autosomal dominant spastic paraplegia , 2009, Clinical genetics.

[64]  Ling Zhang CRASH Syndrome: Does It Teach Us about Neurotrophic Functions of Cell Adhesion Molecules? , 2010, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[65]  M. Zatz,et al.  Reevaluation of a large family defines a new locus for X-linked recessive pure spastic paraplegia (SPG34) on chromosome Xq25 , 2008, neurogenetics.

[66]  J. Melki,et al.  Mutations of SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized in the nucleus. , 2003, Human molecular genetics.

[67]  J. Weissenbach,et al.  Autosomal dominant familial spastic paraplegia is genetically heterogeneous and one locus maps to chromosome 14q , 1993, Nature genetics.

[68]  Xinnan Wang,et al.  The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signalling , 2009, Human molecular genetics.

[69]  G. Gyapay,et al.  KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations , 2012, European Journal of Human Genetics.

[70]  J. Winkler,et al.  Clinical progression and genetic analysis in hereditary spastic paraplegia with thin corpus callosum in spastic gait gene 11 (SPG11). , 2004, Archives of neurology.

[71]  B. Giros,et al.  Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway , 2010, Nature Neuroscience.

[72]  M. Hutchinson,et al.  Dementia in SPG4 hereditary spastic paraplegia , 2009, Neurology.

[73]  M. Pericak-Vance,et al.  Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. , 2006, American journal of human genetics.

[74]  G. A. Schwarz,et al.  Hereditary (familial) spastic paraplegia; further clinical and pathologic observations. , 1956, A.M.A. archives of neurology and psychiatry.

[75]  Ahv Schapira,et al.  Neurology and clinical neuroscience , 2007 .

[76]  A. Crosby,et al.  Is the transportation highway the right road for hereditary spastic paraplegia? , 2002, American journal of human genetics.

[77]  Jianping Lu,et al.  The hereditary spastic paraplegia protein spartin localises to mitochondria , 2006, Journal of neurochemistry.

[78]  I. Sargiannidou,et al.  Molecular mechanisms of gap junction mutations in myelinating cells. , 2010, Histology and histopathology.

[79]  G. A. Schwarz Hereditary (familial) spastic paraplegia. , 1952, A.M.A. archives of neurology and psychiatry.

[80]  P. Bergh,et al.  Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome , 2004, Nature Genetics.

[81]  J. Weissenbach,et al.  A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. , 2000, American journal of human genetics.

[82]  F. Boaretto,et al.  Infancy onset hereditary spastic paraplegia associated with a novel atlastin mutation , 2003, Neurology.

[83]  Jin-A Lee,et al.  Neuronal Functions of ESCRTs , 2012, Experimental neurobiology.

[84]  D. Ito,et al.  Characterization of seipin/BSCL2, a protein associated with spastic paraplegia 17 , 2008, Neurobiology of Disease.

[85]  M. Leppert,et al.  Novel locus for autosomal dominant hereditary spastic paraplegia, on chromosome 8q. , 1999, American journal of human genetics.

[86]  Andrew H Crosby,et al.  Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. , 2008, American journal of human genetics.

[87]  S. Robbins,et al.  Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER , 2006, Journal of Cell Science.

[88]  H. Cross,et al.  Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. , 2003, American journal of human genetics.

[89]  S. Klebe,et al.  A total of 220 patients with autosomal dominant spastic paraplegia do not display mutations in the SLC33A1 gene (SPG42) , 2010, European Journal of Human Genetics.

[90]  Xinran Liu,et al.  Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A , 2003, The Journal of cell biology.

[91]  E. Hoffman,et al.  The rumpshaker mutation in spastic paraplegia , 1994, Nature Genetics.

[92]  A. Yamashita,et al.  Generation of lysophosphatidylinositol by DDHD domain containing 1 (DDHD1): Possible involvement of phospholipase D/phosphatidic acid in the activation of DDHD1. , 2010, Biochimica et biophysica acta.

[93]  G. Bernardi,et al.  SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis , 2010, Brain : a journal of neurology.

[94]  E. Getzoff,et al.  Amyotrophic lateral sclerosis: update and new developments. , 2012, Degenerative neurological and neuromuscular disease.

[95]  A. Durr,et al.  Decreased expression of the mitochondrial matrix proteases Lon and ClpP in cells from a patient with hereditary spastic paraplegia (SPG13) , 2008, Neuroscience.

[96]  S. Klebe,et al.  Mapping of a new form of pure autosomal recessive spastic paraplegia (SPG28) , 2005, Annals of neurology.

[97]  Harding Ae Hereditary Spastic Paraplegias , 1993, Seminars in neurology.

[98]  M. LeDoux Animal models of movement disorders , 2005 .

[99]  M. Abou‐Donia Organophosphorus ester-induced delayed neurotoxicity. , 1981, Annual review of pharmacology and toxicology.

[100]  S. Wharton,et al.  The Cellular and Molecular Pathology of the Motor System in Hereditary Spastic Paraparesis due to Mutation of the Spastin Gene , 2003, Journal of neuropathology and experimental neurology.

[101]  M. Patton,et al.  Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35) , 2010, Human mutation.

[102]  P. Glynn,et al.  Neuropathy Target Esterase and Its Yeast Homologue Degrade Phosphatidylcholine to Glycerophosphocholine in Living Cells* , 2004, Journal of Biological Chemistry.

[103]  C. Krarup,et al.  Hereditary spastic paraplegia with cerebellar ataxia: a complex phenotype associated with a new SPG4 gene mutation , 2004, European journal of neurology.

[104]  J. Fink,et al.  Chapter 119 – Hereditary Spastic Paraplegia , 2013 .

[105]  D. Ledbetter,et al.  Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability , 2010, Journal of Medical Genetics.

[106]  Emmanuel J. Botzolakis,et al.  Hereditary Spastic Paraplegia-Associated Mutations in the NIPA1 Gene and Its Caenorhabditis elegans Homolog Trigger Neural Degeneration In Vitro and In Vivo through a Gain-of-Function Mechanism , 2008, The Journal of Neuroscience.

[107]  J. Kassubek,et al.  Cognitive performance in pure and complicated hereditary spastic paraparesis: a neuropsychological and neuroimaging study , 2007, Neuroscience Letters.

[108]  M. El-Sabban,et al.  Connexins and the gap in context. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[109]  J. Trojanowski,et al.  TDP-43 pathology in a case of hereditary spastic paraplegia with a NIPA1/SPG6 mutation , 2012, Acta Neuropathologica.

[110]  J. Bonifacino,et al.  AP-4, a Novel Protein Complex Related to Clathrin Adaptors* , 1999, The Journal of Biological Chemistry.

[111]  E. Aronica,et al.  Paraplegin mutations in sporadic adult-onset upper motor neuron syndromes , 2008, Neurology.

[112]  J. Kassubek,et al.  Magnetic Resonance Investigation of the Upper Spinal Cord in Pure and Complicated Hereditary Spastic Paraparesis , 2006, European Neurology.

[113]  D. Turnbull,et al.  Paraplegin gene analysis in hereditary spastic paraparesis (HSP) pedigrees in northeast England , 2001, Neurology.

[114]  Satoshi O. Suzuki,et al.  An autopsy case of adult-onset hereditary spastic paraplegia type 2 with a novel mutation in exon 7 of the proteolipid protein 1 gene , 2011, Acta Neuropathologica.

[115]  J. Morton,et al.  Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN) , 2008, Neurology.

[116]  F. Micheli,et al.  Hereditary spastic paraplegia associated with dopa‐responsive parkinsonism , 2006, Movement disorders : official journal of the Movement Disorder Society.

[117]  P. Glynn Neural development and neurodegeneration: two faces of Neuropathy Target Esterase , 2000, Progress in Neurobiology.

[118]  M. Pericak-Vance,et al.  Familial spastic paraparesis: evaluation of locus heterogeneity, anticipation, and haplotype mapping of the SPG4 locus on the short arm of chromosome 2. , 1997, American journal of medical genetics.

[119]  D. Barker,et al.  Refined genetic mapping and proteolipid protein mutation analysis in X-linked pure hereditary spastic paraplegia , 1996, Neurology.

[120]  J. Papp,et al.  Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13 , 2001, Nature Genetics.

[121]  A. Munnich,et al.  X–linked spastic paraplegia and Pelizaeus–Merzbacher disease are allelic disorders at the proteolipid protein locus , 1994, Nature Genetics.

[122]  P. Hedera,et al.  Mutation in KIF5A can also cause adult-onset hereditary spastic paraplegia , 2006, Neurogenetics.

[123]  R. Houlston,et al.  The Silver syndrome variant of hereditary spastic paraplegia maps to chromosome 11q12-q14, with evidence for genetic heterogeneity within this subtype. , 2001, American journal of human genetics.

[124]  Emmanuel J. Botzolakis,et al.  The effect of HSP-causing mutations in SPG3A and NIPA1 on the assembly, trafficking, and interaction between atlastin-1 and NIPA1 , 2011, Molecular and Cellular Neuroscience.

[125]  M. Pericak-Vance,et al.  Linkage of 'pure' autosomal recessive familial spastic paraplegia to chromosome 8 markers and evidence of genetic locus heterogeneity. , 1994, Human molecular genetics.

[126]  H. Coon,et al.  Neuropathy target esterase gene mutations cause motor neuron disease. , 2008, American journal of human genetics.

[127]  K. Fischbeck,et al.  Hereditary spastic paraplegia and amyotrophy associated with a novel locus on chromosome 19 , 2010, neurogenetics.

[128]  M. Pericak-Vance,et al.  A new locus for dominant hereditary spastic paraplegia maps to chromosome 2p12 , 2006, Neurogenetics.

[129]  E. Hoffman,et al.  Genetic localization of a new locus for recessive familial spastic paraparesis to 15q13-15 , 1999, Neurology.

[130]  R. Vale,et al.  The Drosophila Homologue of the Hereditary Spastic Paraplegia Protein, Spastin, Severs and Disassembles Microtubules , 2005, Current Biology.

[131]  E. Budtz-Jørgensen,et al.  NIPA1 mutation in complex hereditary spastic paraplegia with epilepsy , 2011, European journal of neurology.

[132]  E. Leshinsky‐Silver,et al.  A new locus (SPG47) maps to 1p13.2–1p12 in an Arabic family with complicated autosomal recessive hereditary spastic paraplegia and thin corpus callosum , 2011, Journal of the Neurological Sciences.

[133]  P. Bauer,et al.  Mutation in the AP4B1 gene cause hereditary spastic paraplegia type 47 (SPG47) , 2012, neurogenetics.

[134]  Jiandong Sun,et al.  Distinct novel mutations affecting the same base in the NIPA1 gene cause autosomal dominant hereditary spastic paraplegia in two Chinese families , 2005, Human mutation.

[135]  J. Fink,et al.  NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). , 2003, American journal of human genetics.

[136]  G. Gundersen,et al.  Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing , 2005, The Journal of cell biology.

[137]  L. Hudson Pelizaeus-Merzbacher Disease and Spastic Paraplegia Type 2 , 2003, Journal of child neurology.

[138]  R. Stevenson,et al.  X–linked spastic paraplegia (SPG1), MASA syndrome and X–linked hydrocephalus result from mutations in the L1 gene , 1994, Nature Genetics.

[139]  K. Claeys,et al.  Extending the clinical spectrum of SPG3A mutations to a very severe and very early complicated phenotype , 2008, Journal of Neurology.

[140]  S. Tsuji,et al.  A homozygous mutation of C12orf65 causes spastic paraplegia with optic atrophy and neuropathy (SPG55) , 2012, Journal of Medical Genetics.

[141]  T. Siddique,et al.  Linkage of the late onset autosomal dominant familial spastic paraplegia (DFSPII) to chromosome 2p markers , 1994 .

[142]  M. Kostrzewa,et al.  Evidence of a third locus in X-linked recessive spastic paraplegia , 1997, Human Genetics.

[143]  S. Klebe,et al.  Autosomal recessive spastic paraplegia (SPG30) with mild ataxia and sensory neuropathy maps to chromosome 2q37.3. , 2006, Brain : a journal of neurology.

[144]  F. Boaretto,et al.  A new locus for autosomal recessive spastic paraplegia associated with mental retardation and distal motor neuropathy, SPG14, maps to chromosome 3q27-q28. , 2000, American journal of human genetics.

[145]  Y. Agid,et al.  Linkage of a new locus for autosomal dominant familial spastic paraplegia to chromosome 2p. , 1994, Human molecular genetics.

[146]  A. V. Vulto-van Silfhout,et al.  Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia. , 2012, American journal of human genetics.

[147]  E. Derivery,et al.  Identification of a novel candidate gene for non-syndromic autosomal recessive intellectual disability: the WASH complex member SWIP. , 2011, Human molecular genetics.

[148]  Huili Hu,et al.  A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42). , 2008, American journal of human genetics.

[149]  M. Fichera,et al.  Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia , 2004, Neurology.

[150]  G. Holmgren,et al.  Sjögren‐Larsson syndrome in Sweden. A clinical, genetic and epidemiological study , 1981, Clinical genetics.

[151]  G. Bernardi,et al.  Late-onset hereditary spastic paraplegia with thin corpus callosum caused by a new SPG3A mutation , 2011, Journal of Neurology.

[152]  W. Seltzer,et al.  Possible Anticipation in Hereditary Spastic Paraplegia Type 4 (SPG4) , 2007, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[153]  M. Leppert,et al.  Autosomal dominant familial spastic paraplegia: tight linkage to chromosome 15q. , 1995, American journal of human genetics.

[154]  E. Shoubridge,et al.  Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. , 2010, American journal of human genetics.

[155]  M. Pericak-Vance,et al.  Linkage of a locus for autosomal dominant familial spastic paraplegia to chromosome 2p markers. , 1994, Human molecular genetics.

[156]  Tobias Warnecke,et al.  A novel splice site mutation in the SPG7 gene causing widespread fiber damage in homozygous and heterozygous subjects , 2010, Movement disorders : official journal of the Movement Disorder Society.

[157]  D. Rubinsztein,et al.  A locus for autosomal dominant "pure" hereditary spastic paraplegia maps to chromosome 19q13. , 2000, American journal of human genetics.

[158]  K. Xia,et al.  A novel candidate locus on chromosome 11p14.1-p11.2 for autosomal dominant hereditary spastic paraplegia. , 2008, Chinese medical journal.

[159]  N. Bresolin,et al.  A clinical, genetic, and biochemical characterization of SPG7 mutations in a large cohort of patients with hereditary spastic paraplegia , 2008, Human mutation.

[160]  P. Hedera,et al.  Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia , 2001, Nature Genetics.

[161]  K. Shianna,et al.  Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. , 2012, American journal of human genetics.

[162]  D. Ito,et al.  Seipinopathy: a novel endoplasmic reticulum stress-associated disease. , 2009, Brain : a journal of neurology.

[163]  C. Blackstone,et al.  SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development. , 2006, Human molecular genetics.

[164]  H. Cross,et al.  Troyer syndrome revisited. A clinical and radiological study of a complicated hereditary spastic paraplegia. , 2004, Journal of neurology.

[165]  S. Kenwrick,et al.  Neural cell recognition molecule L1: relating biological complexity to human disease mutations. , 2000, Human molecular genetics.

[166]  M. Pericak-Vance,et al.  REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. , 2008, Brain : a journal of neurology.

[167]  D. Sahlender,et al.  The Fifth Adaptor Protein Complex , 2011, PLoS biology.

[168]  J. Casida,et al.  Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity , 2003, Nature Genetics.

[169]  E. Rugarli,et al.  Hereditary spastic paraplegia: clinical genetic study of 15 families. , 2004, Archives of neurology.

[170]  M. Zatz,et al.  Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia. , 2007, American journal of human genetics.

[171]  C. Blackstone,et al.  The Troyer syndrome (SPG20) protein spartin interacts with Eps15. , 2005, Biochemical and biophysical research communications.

[172]  C. Sanderson,et al.  The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. , 2005, Human molecular genetics.

[173]  N. Bouslam,et al.  Autosomal recessive mutilating sensory neuropathy with spastic paraplegia maps to chromosome 5p15.31–14.1 , 2006, European Journal of Human Genetics.

[174]  C. Hodgkinson,et al.  A novel form of autosomal recessive pure hereditary spastic paraplegia maps to chromosome 13q14 , 2002, Neurology.

[175]  M. Hutchinson,et al.  Linkage of AD HSP and cognitive impairment to chromosome 2p: haplotype and phenotype analysis indicates variable expression and low or delayed penetrance , 1998, European Journal of Human Genetics.

[176]  T. Rapoport,et al.  Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes , 2011, Proceedings of the National Academy of Sciences.

[177]  M. Johnson,et al.  THE PRIMARY BIOCHEMICAL LESION LEADING TO THE DELAYED NEUROTOXIC EFFECTS OF SOME ORGANOPHOSPHORUS ESTERS , 1974, Journal of neurochemistry.

[178]  M. Simpson,et al.  A novel locus for an autosomal recessive hereditary spastic paraplegia (SPG35) maps to 16q21-q23 , 2008, Neurology.

[179]  P. Hedera,et al.  Spinal cord magnetic resonance imaging in autosomal dominant hereditary spastic paraplegia , 2005, Neuroradiology.

[180]  Robert I. Krieger,et al.  HANDBOOK OF PESTICIDE TOXICOLOGY , 2001 .

[181]  C. Blackstone,et al.  Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1 , 2009, neurogenetics.

[182]  Imtiaz Qureshi,et al.  Hereditary spastic paraplegia and Evans's syndrome , 1996, Acta paediatrica.

[183]  B. O'neill,et al.  Familial spastic paraplegia with Kallmann's syndrome. , 1983, Journal of neurology, neurosurgery, and psychiatry.

[184]  A. Harding Hereditary spastic paraplegias. , 1993, Seminars in neurology.

[185]  A. Durr,et al.  A new phenotype linked to SPG27 and refinement of the critical region on chromosome , 2006, Journal of Neurology.

[186]  C. Blackstone,et al.  Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. , 2010, The Journal of clinical investigation.

[187]  B. Schlotter-Weigel,et al.  Phenotypes of the N88S Berardinelli–Seip congenital lipodystrophy 2 mutation , 2005, Annals of neurology.

[188]  W. Rottbauer,et al.  Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases. , 2010, Brain : a journal of neurology.

[189]  C. Maurer-Morelli,et al.  Prospective neuroimaging study in hereditary spastic paraplegia with thin corpus callosum , 2007, Movement disorders : official journal of the Movement Disorder Society.

[190]  M. Zatz,et al.  Spastic paraplegia, optic atrophy, and neuropathy is linked to chromosome 11q13 , 2005, Annals of neurology.

[191]  C. Nolte,et al.  Early-onset ALS with long-term survival associated with spastin gene mutation , 2005, Neurology.

[192]  A. Reis,et al.  Autosomal dominant spastic paraplegia with anticipation maps to a 4-cM interval on chromosome 2p21-p24 in a large German family , 1996, Human Genetics.

[193]  K. Fenger,et al.  MRI of autosomal dominant pure spastic paraplegia , 1997, Neuroradiology.

[194]  H. Cross,et al.  The Troyer syndrome. A recessive form of spastic paraplegia with distal muscle wasting. , 1967, Archives of neurology.

[195]  K. Xia,et al.  Expansion of the phenotypic spectrum of SPG6 caused by mutation in NIPA1 , 2011, Clinical Neurology and Neurosurgery.

[196]  A. Shevchenko,et al.  A Genome-Scale DNA Repair RNAi Screen Identifies SPG48 as a Novel Gene Associated with Hereditary Spastic Paraplegia , 2010, PLoS biology.

[197]  F. Lamari,et al.  Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: toward a new category of inherited metabolic diseases , 2013, Journal of Inherited Metabolic Disease.

[198]  W. Paulus,et al.  ZFYVE27 (SPG33), a novel spastin-binding protein, is mutated in hereditary spastic paraplegia. , 2006, American journal of human genetics.

[199]  J. Hirst,et al.  Adaptor Protein Complexes AP‐4 and AP‐5: New Players in Endosomal Trafficking and Progressive Spastic Paraplegia , 2013, Traffic.

[200]  J. Abrams,et al.  ERLIN2 promotes breast cancer cell survival by modulating endoplasmic reticulum stress pathways , 2012, BMC Cancer.

[201]  O. Birk,et al.  Pelizaeus-Merzbacher-like disease caused by AIMP1/p43 homozygous mutation. , 2010, American journal of human genetics.

[202]  G. Gyapay,et al.  Quality assessment of whole genome mapping data in the refined familial spastic paraplegia interval on chromosome 14q. , 1998, Genome research.

[203]  Y. Gong,et al.  Prenatal diagnosis of autosomal dominant hereditary spastic paraplegia (SPG42) caused by SLC33A1 mutation in a Chinese kindred , 2010, Prenatal diagnosis.

[204]  J. Luzio,et al.  Spastin and atlastin, two proteins mutated in autosomal-dominant hereditary spastic paraplegia, are binding partners. , 2006, Human molecular genetics.

[205]  D. Geschwind,et al.  Two novel CYP7B1 mutations in Italian families with SPG5: a clinical and genetic study , 2009, Journal of Neurology.

[206]  Wei Chen,et al.  Deep sequencing reveals 50 novel genes for recessive cognitive disorders , 2011, Nature.

[207]  P. Glynn,et al.  Membrane Association of and Critical Residues in the Catalytic Domain of Human Neuropathy Target Esterase* , 2000, The Journal of Biological Chemistry.

[208]  Katia J. Evans,et al.  Interaction of two hereditary spastic paraplegia gene products, spastin and atlastin, suggests a common pathway for axonal maintenance. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[209]  J. Prehn,et al.  Molecular Mechanisms in Amyotrophic Lateral Sclerosis: The Role of Angiogenin, a Secreted RNase , 2012, Front. Neurosci..

[210]  W. Behan,et al.  Strümpell's familial spastic paraplegia: genetics and neuropathology , 1974, Journal of neurology, neurosurgery, and psychiatry.

[211]  Y. Agid,et al.  The phenotype of “pure” autosomal dominant spastic paraplegia , 1994, Neurology.

[212]  A. Dürr,et al.  Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. , 2002, American journal of human genetics.

[213]  J. Luzio,et al.  Spastin Couples Microtubule Severing to Membrane Traffic in Completion of Cytokinesis and Secretion , 2008, Traffic.

[214]  A. Tolun,et al.  Autosomal recessive spastic paraplegia (SPG45) with mental retardation maps to 10q24.3–q25.1 , 2009, neurogenetics.

[215]  E. Bertini,et al.  Novel locus for autosomal dominant pure hereditary spastic paraplegia (SPG19) maps to chromosome 9q33–q34 , 2002, Annals of neurology.

[216]  F. Al-Mohanna,et al.  Loss of ERLIN2 function leads to juvenile primary lateral sclerosis , 2012, Annals of neurology.

[217]  K Fenger,et al.  CAG repeat expansion in autosomal dominant pure spastic paraplegia linked to chromosome 2p21-p24. , 1997, Human molecular genetics.

[218]  G. Gyapay,et al.  Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. , 2012, American journal of human genetics.

[219]  D. Ito,et al.  [Seipin/BSCL2-related motor neuron disease: Seipinopathy is a novel conformational disease associated with endoplasmic reticulum stress]. , 2007, Rinsho shinkeigaku = Clinical neurology.

[220]  M. Wiedmann,et al.  The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. , 2004, Human molecular genetics.

[221]  M. Hutchinson,et al.  SPG15, a new locus for autosomal recessive complicated HSP on chromosome 14q , 2001, Neurology.

[222]  G. Bernardi,et al.  A new SPG4 mutation in a variant form of spastic paraplegia with congenital arachnoid cysts , 2004, Neurology.

[223]  J. Hardy,et al.  Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA) , 2010, Annals of neurology.

[224]  C. Catsman-Berrevoets,et al.  Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. , 2009, American journal of human genetics.

[225]  D. Rubinsztein,et al.  Subclinical cognitive impairment in autosomal dominant “pure” hereditary spastic paraplegia , 1999, Journal of medical genetics.

[226]  A. Ballabio,et al.  Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia , 2003, The Journal of cell biology.

[227]  A. Matus,et al.  Molecular Cloning of Microtubule‐Associated Protein 1 (MAP1A) and Microtubule‐Associated Protein 5 (MAP1B): Identification of Distinct Genes and Their Differential Expression in Developing Brain , 1990, Journal of neurochemistry.

[228]  A nullimorphic ERLIN2 mutation defines a complicated hereditary spastic paraplegia locus (SPG18) , 2011, neurogenetics.

[229]  Ronald D. Vale,et al.  Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin , 2008, Nature.

[230]  T. Iwaki,et al.  Autopsy case of autosomal recessive hereditary spastic paraplegia with reference to the muscular pathology , 2001, Neuropathology : official journal of the Japanese Society of Neuropathology.

[231]  M Hutchinson,et al.  Autosomal dominant hereditary spastic paraparesis with cognitive loss linked to chromosome 2p. , 1998, Brain : a journal of neurology.

[232]  J. Brody,et al.  Neurofibrillary degeneration on Guam: frequency in Chamorros and non Chamorros with no known neurological disease. , 1979, Brain : a journal of neurology.

[233]  Hitoshi Takahashi,et al.  Autosomal recessive spastic paraplegia with hypoplastic corpus callosum, multisystem degeneration and ubiquitinated eosinophilic granules , 2000, Acta Neuropathologica.

[234]  A. Ballabio,et al.  A new locus for autosomal recessive hereditary spastic paraplegia maps to chromosome 16q24.3. , 1998, American journal of human genetics.

[235]  S. Gygi,et al.  Network organization of the human autophagy system , 2010, Nature.

[236]  W. Stoffel,et al.  Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: Myelination and development , 2002, Glia.

[237]  P. Bork,et al.  SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia , 2002, Nature Genetics.

[238]  S. Dimauro,et al.  Phenotypic analysis of autosomal dominant hereditary spastic paraplegia linked to chromosome 8q , 1999, Neurology.

[239]  G. Bernardi,et al.  Silver syndrome variant of hereditary spastic paraplegia , 2008, Neurology.

[240]  M. Simpson,et al.  A new locus for autosomal recessive complicated hereditary spastic paraplegia (SPG26) maps to chromosome 12p11.1–12q14 , 2005, Journal of Medical Genetics.

[241]  D. Bonneau,et al.  Hereditary spastic paraplegia-like disorder due to a mitochondrial ATP6 gene point mutation. , 2011, Mitochondrion.

[242]  M. Ruberg,et al.  Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum , 2007, Nature Genetics.

[243]  G. Hertz,et al.  Developmental trends of sleep-disordered breathing in Prader-Willi syndrome: the role of obesity. , 1995, American journal of medical genetics.

[244]  B. Tang,et al.  Clinical features of hereditary spastic paraplegia with thin corpus callosum: report of 5 Chinese cases. , 2004, Chinese medical journal.

[245]  M. Passos-Bueno,et al.  Decreased cellular uptake and metabolism in Allan-Herndon-Dudley syndrome (AHDS) due to a novel mutation in the MCT8 thyroid hormone transporter , 2005, Journal of Medical Genetics.

[246]  Z. Otwinowski,et al.  WASH and WAVE actin regulators of the Wiskott–Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes , 2010, Proceedings of the National Academy of Sciences.