Comparing Histogram Data Using a Mahalanobis–Wasserstein Distance
暂无分享,去创建一个
[1] Antonio Irpino,et al. A New Wasserstein Based Distance for the Hierarchical Clustering of Histogram Symbolic Data , 2006, Data Science and Classification.
[2] P. Bertrand,et al. Descriptive Statistics for Symbolic Data , 2000 .
[3] M. Chavent,et al. Trois nouvelles méthodes de classification automatique de données symboliques de type intervalle , 2003 .
[4] E. Diday. Une nouvelle méthode en classification automatique et reconnaissance des formes la méthode des nuées dynamiques , 1971 .
[5] Joffray Baune,et al. Clustering and Validation of Interval Data, Selected contributions in Data Analysis and Classification, P. Brito, P. Bertrand, G. Cucumel, F. DE Carvalho (Eds), Springer, 69-82 , 2007 .
[6] Hans-Hermann Bock,et al. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .
[7] Lynne Billard,et al. Dependencies and Variation Components of Symbolic Interval-Valued Data , 2007 .
[8] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[9] Vladimir Batagelj,et al. Data Science and Classification , 2006, Studies in Classification, Data Analysis, and Knowledge Organization.
[10] Antonio Irpino,et al. Dynamic Clustering of Histogram Data: Using the Right Metric , 2007 .
[11] King-Sun Fu,et al. Digital pattern recognition , 1976, Communication and cybernetics.
[12] Antonio Irpino,et al. Optimal histogram representation of large data sets: Fisher vs piecewise linear approximation , 2007, EGC.
[13] Paula Brito,et al. On the Analysis of Symbolic Data , 2007 .
[14] Carlos Matrán,et al. Optimal Transportation Plans and Convergence in Distribution , 1997 .
[15] Francisco de A. T. de Carvalho,et al. Selected Contributions in Data Analysis and Classification , 2007 .