Kristallstruktur der Methylornithin‐Synthase (PylB): Einblicke in die Biosynthese von Pyrrolysin

Wir danken Sophie Vieweg fur ihre experimentelle Unterstutzung und den Mitarbeitern der PXI des Paul Scherrer Instituts, Swiss Light Source (Villigen, Schweiz) fur ihre Hilfe beim Messen der Datensutze. Diese Arbeit wurde von der Hans-Fischer-Gesellschaft und der King Abdullah University of Science and Technology (Award No. FIC/2010/07) gefcrdert.

[1]  Shuyan Xu,et al.  From Plasma Sources to Nanoassembly WILEY-VCH Verlag GmbH & Co. KGaA , 2013 .

[2]  Christian Hertweck Biosynthese und Einbau von Pyrrolysin, der 22. genetisch codierten Aminosäure , 2011 .

[3]  Susan E. Cellitti,et al.  D-Ornithine coopts pyrrolysine biosynthesis to make and insert pyrroline-carboxy-lysine. , 2011, Nature chemical biology.

[4]  C. Hertweck Biosynthesis and charging of pyrrolysine, the 22nd genetically encoded amino acid. , 2011, Angewandte Chemie.

[5]  Johannes Kästner,et al.  The fragmentation-recombination mechanism of the enzyme glutamate mutase studied by QM/MM simulations. , 2011, Journal of the American Chemical Society.

[6]  J. Krzycki,et al.  Functional context, biosynthesis, and genetic encoding of pyrrolysine. , 2011, Current opinion in microbiology.

[7]  J. Krzycki,et al.  The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine , 2011, Nature.

[8]  G. Saab-Rincón,et al.  Protein design through systematic catalytic loop exchange in the (beta/alpha)8 fold. , 2009, Journal of molecular biology.

[9]  J. Broderick,et al.  Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme , 2008, Proceedings of the National Academy of Sciences.

[10]  D. Stuart,et al.  Structural and dynamic features of the eukaryotic translation initiation pathway , 2008 .

[11]  D. Söll,et al.  Adding pyrrolysine to the Escherichia coli genetic code , 2007, FEBS letters.

[12]  P. Frey,et al.  S-adenosylmethionine as an oxidant: the radical SAM superfamily. , 2007, Trends in biochemical sciences.

[13]  Dagmar Ringe,et al.  The x-ray crystal structure of lysine-2,3-aminomutase from Clostridium subterminale. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Jarrett,et al.  Crystal Structure of Biotin Synthase, an S-Adenosylmethionine-Dependent Radical Enzyme , 2004, Science.

[15]  D. Jahn,et al.  Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes , 2003, The EMBO journal.

[16]  C. James,et al.  A New UAG-Encoded Residue in the Structure of a Methanogen Methyltransferase , 2002, Science.

[17]  Joseph A. Krzycki,et al.  Pyrrolysine Encoded by UAG in Archaea: Charging of a UAG-Decoding Specialized tRNA , 2002, Science.

[18]  Jorge F. Reyes-Spindola,et al.  Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. , 2001, Nucleic acids research.

[19]  E. Marsh,et al.  Pre-steady-state kinetic investigation of intermediates in the reaction catalyzed by adenosylcobalamin-dependent glutamate mutase. , 1999, Biochemistry.

[20]  D. Ballou,et al.  Coupling of cobalt-carbon bond homolysis and hydrogen atom abstraction in adenosylcobalamin-dependent glutamate mutase. , 1998, Biochemistry.

[21]  B. Golding,et al.  Glutamate and 2-methyleneglutarate mutase: from microbial curiosities to paradigms for coenzyme B12-dependent enzymes , 1997 .

[22]  J. L. Hoffman Chromatographic analysis of the chiral and covalent instability of S-adenosyl-L-methionine. , 1986, Biochemistry.

[23]  R. Borchardt,et al.  Chiral instability at sulfur of S-adenosylmethionine. , 1983, Biochemistry.