What Is Morphological Computation? On How the Body Contributes to Cognition and Control

The contribution of the body to cognition and control in natural and artificial agents is increasingly described as “offloading computation from the brain to the body,” where the body is said to perform “morphological computation.” Our investigation of four characteristic cases of morphological computation in animals and robots shows that the “offloading” perspective is misleading. Actually, the contribution of body morphology to cognition and control is rarely computational, in any useful sense of the word. We thus distinguish (1) morphology that facilitates control, (2) morphology that facilitates perception, and the rare cases of (3) morphological computation proper, such as reservoir computing, where the body is actually used for computation. This result contributes to the understanding of the relation between embodiment and computation: The question for robot design and cognitive science is not whether computation is offloaded to the body, but to what extent the body facilitates cognition and control—how it contributes to the overall orchestration of intelligent behavior.

[1]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[2]  Viktor Malyarchuk,et al.  Digital cameras with designs inspired by the arthropod eye , 2013, Nature.

[3]  Chrisantha Fernando,et al.  Pattern Recognition in a Bucket , 2003, ECAL.

[4]  Gentaro Taga,et al.  A model of the neuro-musculo-skeletal system for human locomotion , 1995, Biological Cybernetics.

[5]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[6]  Gordana Dodig-Crnkovic,et al.  Significance of Models of Computation, from Turing Model to Natural Computation , 2011, Minds and Machines.

[7]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[8]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[9]  Andrew Philippides,et al.  Active Shape Discrimination with Compliant Bodies as Reservoir Computers , 2016, Artificial Life.

[10]  Michael Günther,et al.  Intelligence by mechanics , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Marina Basu The Embodied Mind: Cognitive Science and Human Experience , 2004 .

[12]  N. Franceschini,et al.  From insect vision to robot vision , 1992 .

[13]  Tao Li,et al.  Information processing via physical soft body , 2015, Scientific Reports.

[14]  Vincent C. Müller,et al.  Symbol Grounding in Computational Systems: A Paradox of Intentions , 2009, Minds and Machines.

[15]  Gualtiero Piccinini,et al.  The Physical Church–Turing Thesis: Modest or Bold? , 2011, The British Journal for the Philosophy of Science.

[16]  Benjamin Schrauwen,et al.  Automated Design of Complex Dynamic Systems , 2014, PloS one.

[17]  Herbert Jaeger,et al.  Reservoir computing approaches to recurrent neural network training , 2009, Comput. Sci. Rev..

[18]  J. Marsden,et al.  Trajectory Design Combining Invariant Manifolds with Discrete Mechanics and Optimal Control , 2012 .

[19]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[20]  L. Floridi OPEN PROBLEMS IN THE PHILOSOPHY OF INFORMATION , 2004 .

[21]  Oskar von Stryk,et al.  A systematic approach to the design of embodiment with application to bio-inspired compliant legged robots , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[22]  Heinrich M. Jaeger,et al.  Universal robotic gripper based on the jamming of granular material , 2010, Proceedings of the National Academy of Sciences.

[23]  R. Full,et al.  Mechanical aspects of legged locomotion control. , 2004, Arthropod structure & development.

[24]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Frédéric Boyer,et al.  Exploration of Objects by an Underwater Robot with Electric Sense , 2012, Living Machines.

[26]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[27]  A. Wing,et al.  Active touch sensing , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  T. Prescott,et al.  Biomimetic vibrissal sensing for robots , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[29]  Surya Girinatha Nurzaman,et al.  SVAS3: Strain Vector Aided Sensorization of Soft Structures , 2014, Sensors.

[30]  F. Mammano,et al.  Biophysics of the cochlea: linear approximation. , 1993, The Journal of the Acoustical Society of America.

[31]  Gentaro Taga,et al.  A model of the neuro-musculo-skeletal system for human locomotion , 1995, Biological Cybernetics.

[32]  Martijn Wisse,et al.  A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees , 2001, Int. J. Robotics Res..

[33]  Benjamin Schrauwen,et al.  Information Processing Capacity of Dynamical Systems , 2012, Scientific Reports.

[34]  Hod Lipson,et al.  Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion , 2009, Journal of The Royal Society Interface.

[35]  Susan Stepney,et al.  When does a physical system compute? , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Helmut Hauser,et al.  The role of feedback in morphological computation with compliant bodies , 2012, Biological Cybernetics.

[37]  Matthew Howard,et al.  Internal impedance control helps information gain in embodied perception , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[38]  Vincent C. Müller,et al.  On the Possibilities of Hypercomputing Supertasks , 2011, Minds and Machines.

[39]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[40]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[41]  Surya Girinatha Nurzaman,et al.  Guided Self-Organization in a Dynamic Embodied System Based on Attractor Selection Mechanism , 2014, Entropy.

[42]  Gerhard Neumann,et al.  Stochastic Optimal Control Methods for Investigating the Power of Morphological Computation , 2013, Artificial Life.

[43]  Herbert Jaeger,et al.  A tutorial on training recurrent neural networks , covering BPPT , RTRL , EKF and the " echo state network " approach - Semantic Scholar , 2005 .

[44]  Sudeshna Sinha,et al.  Introduction to focus issue: intrinsic and designed computation: information processing in dynamical systems--beyond the digital hegemony. , 2010, Chaos.

[45]  Jonas Degrave,et al.  Developing an embodied gait on a compliant quadrupedal robot , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[46]  Alin Albu-Schäffer,et al.  Soft robotics , 2008, IEEE Robotics & Automation Magazine.

[47]  Benjamin Schrauwen,et al.  Optoelectronic Reservoir Computing , 2011, Scientific Reports.

[48]  Rolf Pfeifer,et al.  The implications of embodiment for behavior and cognition: animal and robotic case studies , 2012, ArXiv.

[49]  Hector Zenil A Behavioural Foundation for Natural Computing and a Programmability Test , 2013 .

[50]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[51]  H. Lipson Challenges and Opportunities for Design, Simulation, and Fabrication of Soft Robots , 2014 .

[52]  L Pesquera,et al.  Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. , 2012, Optics express.

[53]  Nikolaus Correll,et al.  Materials that couple sensing, actuation, computation, and communication , 2015, Science.

[54]  Gordana Dodig-Crnkovic,et al.  A Dialogue Concerning Two World Systems: Info-Computational vs. Mechanistic , 2009, ArXiv.

[55]  Dario Floreano,et al.  Miniature curved artificial compound eyes , 2013, Proceedings of the National Academy of Sciences.

[56]  P. Calvo,et al.  Handbook of cognitive science : an embodied approach , 2008 .

[57]  Benjamin Schrauwen,et al.  Locomotion Without a Brain: Physical Reservoir Computing in Tensegrity Structures , 2013, Artificial Life.

[58]  Chandana Paul,et al.  The Tendon Network of the Fingers Performs Anatomical Computation at a Macroscopic Scale , 2007, IEEE Transactions on Biomedical Engineering.

[59]  Anthony G. Pipe,et al.  From Rat Vibrissae to Biomimetic Technology for Active Touch , 2009 .

[60]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[61]  Benjamin Schrauwen,et al.  The body as a reservoir: locomotion and sensing with linear feedback , 2011 .

[62]  E. Berger,et al.  Effects of sensilla morphology on mechanosensory sensitivity in the crayfish , 2015, Bioinspiration & biomimetics.

[63]  Randall D. Beer,et al.  The Dynamics of Active Categorical Perception in an Evolved Model Agent , 2003, Adapt. Behav..

[64]  Matej Hoffmann,et al.  Simple or complex bodies? Trade-offs in exploiting body morphology for control , 2017 .

[65]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[66]  Juan Pablo Carbajal,et al.  Harnessing Nonlinearities: Behavior Generation from Natural Dynamics , 2012 .

[67]  Anthony G. Pipe,et al.  Whisking with robots , 2009, IEEE Robotics & Automation Magazine.

[68]  Helmut Hauser,et al.  Towards a theoretical foundation for morphological computation with compliant bodies , 2011, Biological Cybernetics.

[69]  Olaf Sporns,et al.  Mapping Information Flow in Sensorimotor Networks , 2006, PLoS Comput. Biol..

[70]  R. Pfeifer,et al.  Exploiting body dynamics for controlling a running quadruped robot , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[71]  James P. Crutchfield,et al.  Computation in Finitary Stochastic and Quantum Processes , 2006 .

[72]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[73]  R. Bajcsy Active perception , 1988 .

[74]  Helmut Hauser,et al.  Morphological Computation and Morphological Control: Steps Toward a Formal Theory and Applications , 2013, Artificial Life.

[75]  Vincent C. Müller Pancomputationalism: Theory or Metaphor? , 2014 .

[76]  Mark R. Cutkosky,et al.  Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[77]  Fumiya Iida,et al.  Soft Robotics: The Next Generation of Intelligent Machines , 2013, IJCAI.

[78]  Christine Chevallereau,et al.  Underwater navigation based on passive electric sense: New perspectives for underwater docking , 2015, Int. J. Robotics Res..

[79]  Fumiya Iida,et al.  The challenges ahead for bio-inspired 'soft' robotics , 2012, CACM.

[80]  Gualtiero Piccinini,et al.  Computations and Computers in the Sciences of Mind and Brain , 2003 .

[81]  Benjamin Schrauwen,et al.  Analog readout for optical reservoir computers , 2012, NIPS.

[82]  Helmut Hauser,et al.  A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm , 2013, Front. Comput. Neurosci..

[83]  L. Munari How the body shapes the way we think — a new view of intelligence , 2009 .

[84]  Koh Hosoda,et al.  Advantages of flexible musculoskeletal robot structure in sensory acquisition , 2012, Artificial Life and Robotics.

[85]  TrimmerBarry A Journal of Soft Robotics: Why Now? , 2014 .