Direction of Arrival Estimation in Passive Sonar Systems

last decades witnessed several research activities in the area of acoustic undersea warfare targeting the development of advanced systems to accurately detect and localize underwater moving targets. One of the main categories of these systems is the passive sonar (sound navigation and ranging) that searches for the location of the ships and submarines by listening to the radiated noise produced by their propellers, machinery, and flow dynamics. The performance of the passive sonar (involving estimation of the target bearing) highly depends on the particular array signal processing algorithms used in practice. Presently, the main challenge is to accurately estimate the target bearing in low signal to noise ratio for the underwater environment. This book presents advanced high spatial resolution techniques for both uniform and nonuniform hydrophone arrays. These techniques are now utilized in real applications due to its outstanding performance.

[1]  S. Lawrence Marple Fast algorithm for the two-dimensional modified covariance method of linear prediction , 1998 .

[2]  D. N. Swingler,et al.  Linear prediction for aperture extrapolation in line array beamforming , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[3]  Paul Etter Underwater Acoustic Modeling and Simulation, Fourth Edition , 2013 .

[4]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[5]  A. Moffet Minimum-redundancy linear arrays , 1968 .

[6]  Laurent Albera,et al.  On the virtual array concept for higher order array processing , 2005, IEEE Transactions on Signal Processing.

[7]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[8]  Sanjit K. Mitra,et al.  Warped discrete-Fourier transform: Theory and applications , 2001 .

[9]  K. J. Ray Liu,et al.  Handbook on Array Processing and Sensor Networks , 2010 .

[10]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[11]  A. Papoulis Signal Analysis , 1977 .

[12]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[13]  Abdalla Osman,et al.  DOA estimation based on fourth order cumulant beamforming for nonuniform linear array of DIFAR sonobuoys , 2012, Comput. Electr. Eng..

[14]  C. Burrus,et al.  Array Signal Processing , 1989 .

[15]  M. Korenberg Fast Orthogonal Algorithms for Nonlinear System Identification and Time-Series Analysis , 1989 .

[16]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[17]  Heinrich Kuttruff,et al.  Acoustics: An Introduction , 2006 .

[18]  Aboelmagd Noureldin,et al.  Angle of arrival estimation based on warped delay-and-sum (WDAS) beamforming technique , 2011, OCEANS'11 MTS/IEEE KONA.

[19]  S. Marple,et al.  Two-dimensional lattice linear prediction parameter estimation method and fast algorithm , 2000, IEEE Signal Processing Letters.

[20]  P. Atkins Tutorial introduction and historical overview of the need for heading sensors in sonar applications , 1994 .

[21]  Brahim Aksasse,et al.  Two-dimensional autoregressive (2-D AR) model order estimation , 1999, IEEE Trans. Signal Process..

[22]  Gordon M. Wenz,et al.  Review of Underwater Acoustics Research: Noise , 1972 .

[23]  B.D. Van Veen,et al.  Beamforming: a versatile approach to spatial filtering , 1988, IEEE ASSP Magazine.

[24]  Yang Huang,et al.  The Model and Algorithm of Doppler Radar Speed Measurement System , 2011 .

[25]  Prabhakar S. Naidu,et al.  Sensor Array Signal Processing , 2000 .

[26]  Benjamin Friedlander,et al.  Direction finding algorithms based on high-order statistics , 1991, IEEE Trans. Signal Process..

[27]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[28]  T. Engin Tuncer,et al.  Classical and Modern Direction-of-Arrival Estimation , 2009 .

[29]  Anamitra Makur Computational Schemes for Warped DFT and Its Inverse , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[30]  David N. Swingler,et al.  Line-array beamforming using linear prediction for aperture interpolation and extrapolation , 1989, IEEE Trans. Acoust. Speech Signal Process..

[31]  Ma Xiaochuan Optimum Array Processing Toolbox Based on MATLAB , 2008 .

[32]  D.H. Johnson,et al.  The application of spectral estimation methods to bearing estimation problems , 1982, Proceedings of the IEEE.

[33]  Harry Henderson Encyclopedia of Computer Science and Technology , 2002 .

[34]  James F. Bartram,et al.  Underwater Acoustic System Analysis by William S. Burdic , 1984 .

[35]  Yiqiang Yu,et al.  Introduction to Direction-Of-Arrival Estimation , 2010 .

[36]  Anne Ferréol,et al.  On the virtual array concept for the fourth-order direction finding problem , 1999, IEEE Trans. Signal Process..

[37]  C. Clay,et al.  Ocean Acoustics: Theory and Experiment in Underwater Sound , 1987 .

[38]  P. Chau,et al.  High-resolution DOA estimation from synthetic aperture beamforming , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[39]  F. Jensen Propagation and Signal Modeling , 2008 .

[40]  Daniel Desrochers High-resolution beamforming techniques applied toa DIFAR sonobuoy , 1999 .

[41]  Fernando S. Schlindwein,et al.  Autoregressive Order Selection for Rotating Machinery , 2006 .

[42]  K. L. Doty Digital Spectral Analysis of Audio Signals , 1965 .

[43]  Xavier Lurton,et al.  An Introduction to Underwater Acoustics: Principles and Applications , 2010 .

[44]  K.T. Wong,et al.  Virtual-manifold ambiguity in HOS-based direction-finding with electromagnetic vector-sensors , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[45]  L. Godara Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations , 1997, Proc. IEEE.

[46]  Two-Dimensional Signal Analysis: Garello/Two-Dimensional , 2008 .

[47]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[48]  Michael D. Zoltowski,et al.  Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT , 1996, IEEE Trans. Signal Process..

[49]  R. Kumaresan,et al.  Estimating the Angles of Arrival of Multiple Plane Waves , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[50]  Ming-Hui Li,et al.  Improving the performance of GA-ML DOA estimator with a resampling scheme , 2004, Signal Process..

[51]  Theodore S. Rappaport,et al.  Smart Antennas for Wireless Communications: Is-95 and Third Generation Cdma Applications , 1999 .

[52]  Andreas Spanias,et al.  Narrowband Direction of Arrival Estimation for Antenna Arrays , 2008, Narrowband Direction of Arrival Estimation for Antenna Arrays.

[53]  C. W. Horton,et al.  Signal Processing Of Underwater Acoustic Waves , 1969 .

[54]  Bülent Sezen,et al.  An evolutionary computing approach for the target motion analysis (TMA) problem for underwater tracks , 2009, Expert Syst. Appl..

[55]  M. J. Korenberg,et al.  A robust orthogonal algorithm for system identification and time-series analysis , 1989, Biological Cybernetics.

[56]  James H. McClellan,et al.  DOA Estimation of Wideband Signals , 2005 .

[57]  P. Palanisamy,et al.  Direction of Arrival Estimation Based on Fourth-Order Cumulant Using Propagator Method , 2009 .

[58]  James H. McClellan,et al.  Multiresolution Quadtree Beamformer , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[59]  L. C. Godara,et al.  Applications Of Antenna Arrays To Mobile Communications, Part I: Performance Improvement, Feasibility, And System Considerations , 1997, Proceedings of the IEEE.

[60]  Robert J. Urick,et al.  Principles of underwater sound , 1975 .