To inorganic nanoparticles via nanoclusters: Nonclassical nucleation and growth pathway

[1]  Jong Suk Yoo,et al.  Atomically Precise Gold Nanoclusters as Model Catalysts for Identifying Active Sites for Electroreduction of CO2​. , 2021, Angewandte Chemie.

[2]  Y. Negishi,et al.  Thiolate-Protected Metal Nanoclusters: Recent Development in Synthesis, Understanding of Reaction, and Application in Energy and Environmental Field. , 2021, Small.

[3]  T. Pradeep,et al.  Self-Assembly of Precision Noble Metal Nanoclusters: Hierarchical Structural Complexity, Colloidal Superstructures, and Applications. , 2021, Small.

[4]  T. Hyeon,et al.  Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters , 2021, Nature Materials.

[5]  Zhikun Wu,et al.  Controlling ultrasmall gold nanoparticles with atomic precision , 2020, Chemical science.

[6]  T. Hyeon,et al.  Highly Fluorescent Gold Cluster Assembly. , 2020, Journal of the American Chemical Society.

[7]  T. Hyeon,et al.  Magic-Sized Stoichiometric II-VI Nanoclusters. , 2020, Small.

[8]  R. Jin,et al.  Atomically precise alloy nanoclusters: syntheses, structures, and properties. , 2020, Chemical Society reviews.

[9]  H. Wende,et al.  Molecular Nanomagnets , 2020 .

[10]  R. Jin,et al.  Synthesis and Optical Properties of Two-Photon-Absorbing Au25(Captopril)18-Embedded Polyacrylamide Nanoparticles for Cancer Therapy , 2020 .

[11]  Yuanxin Du,et al.  Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. , 2020, Chemical reviews.

[12]  Manzhou Zhu,et al.  Transformation of Atomically Precise Nanoclusters by Ligand-Exchange , 2019 .

[13]  D. Jiang,et al.  Real-time Monitoring of the Dynamic Intra-cluster Diffusion of Single Gold Atoms into Silver Nanoclusters. , 2019, Journal of the American Chemical Society.

[14]  M. Samoć,et al.  Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters. , 2019, Chemical Society reviews.

[15]  N. Zheng,et al.  Cd12Ag32(SePh)36: Non-Noble Metal Doped Silver Nanoclusters. , 2019, Journal of the American Chemical Society.

[16]  Manzhou Zhu,et al.  Tailoring the photoluminescence of atomically precise nanoclusters. , 2019, Chemical Society reviews.

[17]  T. Hyeon,et al.  Molecular-Level Understanding of Continuous Growth from Iron-Oxo Clusters to Iron Oxide Nanoparticles. , 2019, Journal of the American Chemical Society.

[18]  H. Rohrs,et al.  Isolation of Amine Derivatives of (ZnSe)34 and (CdTe)34. Spectroscopic Comparisons of the (II-VI)13 and (II-VI)34 Magic-Size Nanoclusters. , 2019, Inorganic chemistry.

[19]  Dongil Lee,et al.  Electrochemistry of Atomically Precise Metal Nanoclusters. , 2018, Accounts of chemical research.

[20]  O. Bakr,et al.  Atomic-Level Doping of Metal Clusters. , 2018, Accounts of chemical research.

[21]  T. Hyeon,et al.  Co2+-Doping of Magic-Sized CdSe Clusters: Structural Insights via Ligand Field Transitions. , 2018, Nano letters.

[22]  L. Cavallo,et al.  Tailoring the Crystal Structure of Nanoclusters Unveiled High Photoluminescence via Ion Pairing , 2018 .

[23]  Chang‐Wei Yeh,et al.  Highly Luminescent Dual-Color-Emitting Alloyed [ZnxCd1–xSeyS1–y] Quantum Dots: Investigation of Bimodal Growth and Application to Lighting , 2017 .

[24]  D. Leong,et al.  Understanding seed-mediated growth of gold nanoclusters at molecular level , 2017, Nature Communications.

[25]  Oliver T. Bruns,et al.  Shortwave Infrared in Vivo Imaging with Gold Nanoclusters. , 2017, Nano letters.

[26]  Taeghwan Hyeon,et al.  Chemical Synthesis, Doping, and Transformation of Magic-Sized Semiconductor Alloy Nanoclusters. , 2017, Journal of the American Chemical Society.

[27]  J. Xie,et al.  Mechanistic exploration and controlled synthesis of precise thiolate-gold nanoclusters , 2016 .

[28]  K. Jensen,et al.  Characterization of Indium Phosphide Quantum Dot Growth Intermediates Using MALDI-TOF Mass Spectrometry. , 2016, Journal of the American Chemical Society.

[29]  N. Zheng,et al.  Asymmetric Synthesis of Chiral Bimetallic [Ag28Cu12(SR)24]4- Nanoclusters via Ion Pairing. , 2016, Journal of the American Chemical Society.

[30]  R. Jin,et al.  Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. , 2016, Chemical reviews.

[31]  J. Xie,et al.  Synthesis of thiolate-protected Au nanoparticles revisited: U-shape trend between the size of nanoparticles and thiol-to-Au ratio. , 2016, Chemical communications.

[32]  Taeghwan Hyeon,et al.  Nonclassical nucleation and growth of inorganic nanoparticles , 2016 .

[33]  M. Abbas,et al.  Ag16(SG)9 Nanoclusters as a Light Harvester for Metal‐Cluster‐Sensitized Solar Cells , 2016 .

[34]  O. Bakr,et al.  Switching a Nanocluster Core from Hollow to Nonhollow , 2016 .

[35]  R. Pereiro,et al.  Functionalized gold nanoclusters as fluorescent labels for immunoassays: Application to human serum immunoglobulin E determination. , 2016, Biosensors & bioelectronics.

[36]  W. Kaminsky,et al.  Single-Crystal and Electronic Structure of a 1.3 nm Indium Phosphide Nanocluster. , 2016, Journal of the American Chemical Society.

[37]  A. Chattopadhyay,et al.  Zinc mediated crystalline assembly of gold nanoclusters for expedient hydrogen storage and sensing , 2016 .

[38]  Manas R. Parida,et al.  Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag24Au(SR)18](-) Nanocluster. , 2016, Angewandte Chemie.

[39]  T. Pradeep,et al.  Intercluster Reactions between Au25(SR)18 and Ag44(SR)30. , 2016, Journal of the American Chemical Society.

[40]  Theodore Goodson,et al.  Linear and Nonlinear Optical Properties of Monolayer-Protected Gold Nanocluster Films. , 2016, ACS nano.

[41]  B. Cossairt,et al.  Investigating the role of amine in InP nanocrystal synthesis: destabilizing cluster intermediates by Z-type ligand displacement. , 2016, Chemical communications.

[42]  Jung Ho Yu,et al.  Route to the Smallest Doped Semiconductor: Mn(2+)-Doped (CdSe)13 Clusters. , 2015, Journal of the American Chemical Society.

[43]  O. Bakr,et al.  [Ag25(SR)18](-): The "Golden" Silver Nanoparticle. , 2015, Journal of the American Chemical Society.

[44]  Etsuko Fujita,et al.  CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. , 2015, Chemical reviews.

[45]  U. Landman,et al.  M3Ag17(SPh)12 Nanoparticles and Their Structure Prediction. , 2015, Journal of the American Chemical Society.

[46]  R. Jin,et al.  Transformation Chemistry of Gold Nanoclusters: From One Stable Size to Another. , 2015, The journal of physical chemistry letters.

[47]  Dongil Lee,et al.  Ultrabright Luminescence from Gold Nanoclusters: Rigidifying the Au(I)-Thiolate Shell. , 2015, Journal of the American Chemical Society.

[48]  R. Whetten,et al.  Reversible Size Control of Silver Nanoclusters via Ligand-Exchange , 2015 .

[49]  Dan Li,et al.  Facile Synthesis of Fluorescent Silver Nanoclusters as Simultaneous Detection and Remediation for Hg2 , 2015 .

[50]  Zhikun Wu,et al.  Fast, high-yield synthesis of amphiphilic Ag nanoclusters and the sensing of Hg(2+) in environmental samples. , 2015, Nanoscale.

[51]  X. Zuo,et al.  Au133(SPh-tBu)52 nanomolecules: X-ray crystallography, optical, electrochemical, and theoretical analysis. , 2015, Journal of the American Chemical Society.

[52]  Tsunehiro Tanaka,et al.  The support effect on the size and catalytic activity of thiolated Au₂₅ nanoclusters as precatalysts. , 2015, Nanoscale.

[53]  P. Li,et al.  Metal exchange method using Au25 nanoclusters as templates for alloy nanoclusters with atomic precision. , 2015, Journal of the American Chemical Society.

[54]  L. Zakharov,et al.  Aqueous formation and manipulation of the iron-oxo Keggin ion , 2015, Science.

[55]  Jie Chen,et al.  Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance , 2015, Scientific Reports.

[56]  Bin Liu,et al.  Metal-cluster-decorated TiO2 nanotube arrays: a composite heterostructure toward versatile photocatalytic and photoelectrochemical applications. , 2015, Small.

[57]  Yuanyuan Wang,et al.  Magic-size II-VI nanoclusters as synthons for flat colloidal nanocrystals. , 2015, Inorganic chemistry.

[58]  Hannu Häkkinen,et al.  A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters. , 2015, Journal of the American Chemical Society.

[59]  T. Pradeep,et al.  Simple and efficient separation of atomically precise noble metal clusters. , 2014, Analytical chemistry.

[60]  J. Ho,et al.  Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols. , 2014, ACS applied materials & interfaces.

[61]  B. Iversen,et al.  Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. , 2014, ACS nano.

[62]  H. Häkkinen,et al.  Ag11(SG)7: A New Cluster Identified by Mass Spectrometry and Optical Spectroscopy , 2014 .

[63]  A. Dass,et al.  Au₁₃₇(SR)₅₆ nanomolecules: composition, optical spectroscopy, electrochemistry and electrocatalytic reduction of CO₂. , 2014, Chemical Communications.

[64]  R. Jin,et al.  Gold nanocluster-catalyzed semihydrogenation: a unique activation pathway for terminal alkynes. , 2014, Journal of the American Chemical Society.

[65]  Xiaohao Yang,et al.  Atomic structures and gram scale synthesis of three tetrahedral quantum dots. , 2014, Journal of the American Chemical Society.

[66]  Douglas R. Kauffman,et al.  Probing active site chemistry with differently charged Au25q nanoclusters (q = −1, 0, +1) , 2014 .

[67]  R. Jin,et al.  Crystal structure and electronic properties of a thiolate-protected Au24 nanocluster. , 2014, Nanoscale.

[68]  Jianping Xie,et al.  Ultrasmall Au10−12(SG)10−12 Nanomolecules for High Tumor Specificity and Cancer Radiotherapy , 2014, Advanced materials.

[69]  Douglas R. Kauffman,et al.  Generation of Singlet Oxygen by Photoexcited Au25(SR)18 Clusters , 2014 .

[70]  H. Häkkinen,et al.  Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. , 2014, Journal of the American Chemical Society.

[71]  H. Rohrs,et al.  The Magic-Size Nanocluster (CdSe)34 as a Low-Temperature Nucleant for Cadmium Selenide Nanocrystals; Room-Temperature Growth of Crystalline Quantum Platelets , 2014, Chemistry of materials : a publication of the American Chemical Society.

[72]  Barry P Rand,et al.  Thin Film Metal Nanocluster Light‐Emitting Devices , 2014, Advanced materials.

[73]  Shawn P. Shields,et al.  Kinetics and Mechanisms of Aggregative Nanocrystal Growth , 2014 .

[74]  W. S. Compel,et al.  Structure-activity relationships for biodistribution, pharmacokinetics, and excretion of atomically precise nanoclusters in a murine model. , 2013, Nanoscale.

[75]  Hannu Häkkinen,et al.  All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures , 2013, Nature Communications.

[76]  E. Mendoza,et al.  Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. , 2013, Nature chemistry.

[77]  R. Jin,et al.  Stable Au25(SR)18/TiO2 Composite Nanostructure with Enhanced Visible Light Photocatalytic Activity , 2013 .

[78]  Sanjeev Kumar,et al.  On the mechanism of metal nanoparticle synthesis in the Brust-Schiffrin method. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[79]  Akihiko Kudo,et al.  Enhanced photocatalytic water splitting by BaLa4Ti4O15 loaded with ∼1 nm gold nanoclusters using glutathione-protected Au25 clusters. , 2013, Nanoscale.

[80]  R. Jin,et al.  Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. , 2013, Journal of the American Chemical Society.

[81]  P. Dugourd,et al.  Synthesis, characterization and optical properties of low nuclearity liganded silver clusters: Ag31(SG)19 and Ag15(SG)11. , 2013, Nanoscale.

[82]  J. Xie,et al.  Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. , 2013, Chemistry, an Asian journal.

[83]  N. Zheng,et al.  Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures. , 2013, Nanoscale.

[84]  N. Yan,et al.  Scalable and Precise Synthesis of Thiolated Au10–12, Au15, Au18, and Au25 Nanoclusters via pH Controlled CO Reduction , 2013 .

[85]  S. Rosenthal,et al.  Synthesis of Ultrasmall and Magic-Sized CdSe Nanocrystals , 2013 .

[86]  Samuel Woojoo Jun,et al.  Sizing by weighing: characterizing sizes of ultrasmall-sized iron oxide nanocrystals using MALDI-TOF mass spectrometry. , 2013, Journal of the American Chemical Society.

[87]  N. Zheng,et al.  Crystal structure of a luminescent thiolated Ag nanocluster with an octahedral Ag6(4+) core. , 2013, Chemical communications.

[88]  U. Landman,et al.  Ultrastable silver nanoparticles , 2013, Nature.

[89]  U. Landman,et al.  Total structure and electronic properties of the gold nanocrystal Au36(SR)24. , 2012, Angewandte Chemie.

[90]  T. Pradeep,et al.  Selective visual detection of TNT at the sub-zeptomole level. , 2012, Angewandte Chemie.

[91]  J. Lee,et al.  Observation of cluster size growth in CO-directed synthesis of Au25(SR)18 nanoclusters. , 2012, ACS nano.

[92]  R. Jin,et al.  Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. , 2012, Nano letters.

[93]  Borries Demeler,et al.  Ag44(SR)30(4-): a silver-thiolate superatom complex. , 2012, Nanoscale.

[94]  Rongchao Jin,et al.  CO oxidation catalyzed by oxide-supported Au25(SR)18 nanoclusters and identification of perimeter sites as active centers. , 2012, ACS nano.

[95]  T. Bigioni,et al.  Mass spectrometric identification of silver nanoparticles: the case of Ag32(SG)19. , 2012, Analytical chemistry.

[96]  Wei Chen,et al.  Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. , 2012, Chemical Society reviews.

[97]  T. Pradeep,et al.  Luminescent, freestanding composite films of Au15 for specific metal ion sensing. , 2012, ACS applied materials & interfaces.

[98]  Y. Negishi,et al.  Palladium doping of magic gold cluster Au38(SC2H4Ph)24: formation of Pd2Au36(SC2H4Ph)24 with higher stability than Au38(SC2H4Ph)24. , 2012, Chemical communications.

[99]  T. Hyeon,et al.  Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. , 2011, Small.

[100]  Yanhua Dong,et al.  Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. , 2011, Analytical chemistry.

[101]  A Paul Alivisatos,et al.  Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. , 2010, Journal of the American Chemical Society.

[102]  J. Gale,et al.  Water is the key to nonclassical nucleation of amorphous calcium carbonate. , 2010, Journal of the American Chemical Society.

[103]  T. Pradeep,et al.  Ag(9) quantum cluster through a solid-state route. , 2010, Journal of the American Chemical Society.

[104]  R. Jin,et al.  Size focusing: a methodology for synthesizing atomically precise gold nanoclusters , 2010 .

[105]  T. Bigioni,et al.  Glutathione-stabilized magic-number silver cluster compounds. , 2010, Journal of the American Chemical Society.

[106]  Christopher M. Evans,et al.  Mysteries of TOPSe revealed: insights into quantum dot nucleation. , 2010, Journal of the American Chemical Society.

[107]  T. Tatsuma,et al.  Photovoltaic Properties of Glutathione‐Protected Gold Clusters Adsorbed on TiO2 Electrodes , 2010, Advanced materials.

[108]  A. Banerjee,et al.  Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and HgII Sensing , 2010 .

[109]  T. Tatsuma,et al.  Photocatalysis of Au25-modified TiO2 under visible and near infrared light , 2010 .

[110]  R. Lennox,et al.  New insights into Brust-Schiffrin metal nanoparticle synthesis. , 2010, Journal of the American Chemical Society.

[111]  Tapas Kumar Maji,et al.  Supramolecular hydrogels and high-aspect-ratio nanofibers through charge-transfer-induced alternate coassembly. , 2010, Angewandte Chemie.

[112]  Dehong Hu,et al.  Highly selective fluorescent sensors for Hg(2+) based on bovine serum albumin-capped gold nanoclusters. , 2010, The Analyst.

[113]  Yi Lu,et al.  Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg(2+) sensor. , 2010, The Analyst.

[114]  A. Schaper,et al.  Discontinuous Growth of II−VI Semiconductor Nanocrystals from Different Materials , 2010 .

[115]  Leroy Cronin,et al.  Polyoxometalates: building blocks for functional nanoscale systems. , 2010, Angewandte Chemie.

[116]  Jianping Xie,et al.  Highly selective and ultrasensitive detection of Hg(2+) based on fluorescence quenching of Au nanoclusters by Hg(2+)-Au(+) interactions. , 2010, Chemical communications.

[117]  Klaus Rademann,et al.  Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. , 2010, ACS nano.

[118]  F. Emmerling,et al.  Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. , 2010, Journal of the American Chemical Society.

[119]  J. Furdyna,et al.  Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. , 2010, Nature materials.

[120]  D. Ly,et al.  High yield, large scale synthesis of thiolate-protected Ag7 clusters. , 2009, Journal of the American Chemical Society.

[121]  R. V. Omkumar,et al.  Bright, NIR-emitting Au23 from Au25: characterization and applications including biolabeling. , 2009, Chemistry.

[122]  Chun-yan Liu,et al.  Study of Magic-Size-Cluster Mediated Formation of CdS Nanocrystals: Properties of the Magic-Size Clusters and Mechanism Implication , 2009 .

[123]  A. Alivisatos,et al.  Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories , 2009, Science.

[124]  Ramachandran Kumar,et al.  Discontinuous Growth of Colloidal CdSe Nanocrystals in the Magic Structure , 2009 .

[125]  E. Fachini,et al.  A mixed-valence octanuclear iron-oxo pyrazolate: assessment of electronic delocalization by structural and spectroscopic analysis. , 2008, Inorganic chemistry.

[126]  G. Hutchings,et al.  Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation , 2008, Science.

[127]  T. Krauss,et al.  Ultrabright PbSe magic-sized clusters. , 2008, Nano letters.

[128]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[129]  K. Abboud,et al.  Unusual structural types in polynuclear iron chemistry from the use of N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine (edteH4): Fe5, Fe6, and Fe12 clusters. , 2008, Inorganic chemistry.

[130]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[131]  R. Jin,et al.  Kinetically controlled, high-yield synthesis of Au25 clusters. , 2008, Journal of the American Chemical Society.

[132]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[133]  J. Jasinski,et al.  Quantized Growth of CdTe Quantum Dots; Observation of Magic-Sized CdTe Quantum Dots , 2007 .

[134]  T. Hyeon,et al.  Kinetics of monodisperse iron oxide nanocrystal formation by "heating-up" process. , 2007, Journal of the American Chemical Society.

[135]  T. Sugimoto Underlying mechanisms in size control of uniform nanoparticles. , 2007, Journal of colloid and interface science.

[136]  R. Dickson,et al.  In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. , 2007, Angewandte Chemie.

[137]  Yang Li,et al.  Sequential Growth of Magic‐Size CdSe Nanocrystals , 2007 .

[138]  Y. Negishi,et al.  Kinetic stabilization of growing gold clusters by passivation with thiolates. , 2006, The journal of physical chemistry. B.

[139]  Jung Ho Yu,et al.  Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. , 2006, Journal of the American Chemical Society.

[140]  R. Finke,et al.  Nanocluster Nucleation, Growth, and Then Agglomeration Kinetic and Mechanistic Studies: A More General, Four-Step Mechanism Involving Double Autocatalysis , 2005 .

[141]  Paul Mulvaney,et al.  Nucleation and growth of CdSe nanocrystals in a binary ligand system. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[142]  R. Finke,et al.  A mechanism for transition-metal nanoparticle self-assembly. , 2005, Journal of the American Chemical Society.

[143]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[144]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[145]  A. Terzis,et al.  A new example of a tetranuclear iron(III) cluster containing the [Fe4O2]8+ core: preparation, X-ray crystal structure, magnetochemistry and Mössbauer study of [Fe4O2(O2CMe)6(N3)2(phen)2] , 2004 .

[146]  Y. Kawazoe,et al.  Ultra-stable nanoparticles of CdSe revealed from mass spectrometry , 2004, Nature materials.

[147]  A. Dress,et al.  Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles , 2003, Nature.

[148]  Masatake Haruta,et al.  When gold is not noble: catalysis by nanoparticles. , 2003, Chemical record.

[149]  A. Rogach,et al.  Organization of Matter on Different Size Scales: Monodisperse Nanocrystals and Their Superstructures , 2002 .

[150]  Andreas Kornowski,et al.  Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. , 2002, Journal of the American Chemical Society.

[151]  A. Rogach,et al.  Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study , 2001 .

[152]  U. Banin,et al.  Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. , 2001, Journal of the American Chemical Society.

[153]  U. Banin,et al.  Molecular Limit of a Bulk Semiconductor: Size Dependence of the “Band Gap” in CdSe Cluster Molecules , 2000 .

[154]  R. Whetten,et al.  Giant Gold−Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions , 2000 .

[155]  Robert L. Whetten,et al.  Controlled Etching of Au:SR Cluster Compounds , 1999 .

[156]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[157]  R. Finke,et al.  Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism When Hydrogen Is the Reductant: Slow, Continuous Nucleation and Fast Autocatalytic Surface Growth , 1997 .

[158]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[159]  J. Burger,et al.  Stabilization of Iron Clusters by Polyolato Ligands and Calcium Ions: An Fe14 Oxocluster from Aqueous Alkaline Solution , 1997 .

[160]  A. Powell,et al.  Synthesis, Structures, and Magnetic Properties of Fe2, Fe17, and Fe19 Oxo-Bridged Iron Clusters: The Stabilization of High Ground State Spins by Cluster Aggregates , 1995 .

[161]  Christopher J. Kiely,et al.  Synthesis and reactions of functionalised gold nanoparticles , 1995 .

[162]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[163]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[164]  S. Lippard,et al.  A mixed-valent polyiron oxo complex that models the biomineralization of the ferritin core. , 1993, Science.

[165]  E. D. Shchukin,et al.  Ostwald ripening theory: applications to fluorocarbon emulsion stability , 1992 .

[166]  S. Lippard,et al.  Synthesis and structure of [Fe(OMe)2(O2CCH2Cl)]10: a molecular ferric wheel , 1990 .

[167]  S. Lippard,et al.  A novel hexairon(III) aggregate prepared from a basic iron(III) benzoate. Possible building blocks in ferritin core formation , 1988 .

[168]  T. Sugimoto Preparation of monodispersed colloidal particles , 1987 .

[169]  W. G. Klemperer,et al.  Metal Oxide Chemistry in Solution: The Early Transition Metal Polyoxoanions , 1985, Science.

[170]  M. T. Pope,et al.  A heteropolyanion with fivefold molecular symmetry that contains a nonlabile encapsulated sodium ion. The structure and chemistry of [NaP5W30O110]14- , 1985 .

[171]  Raymond E. Davis,et al.  Electron transfer in mixed-valence, oxo-centered, trinuclear iron acetate complexes: effect of statically disordered to dynamically disordered transformation in the solid state , 1984 .

[172]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[173]  B. Dawson The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62).14H2O , 1953 .

[174]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[175]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[176]  J. S. Anderson,et al.  Constitution of the Poly-acids , 1937, Nature.

[177]  J. Keggin,et al.  Structure of the Molecule of i2-Phosphotungstic , 1933, Nature.