Shining Light on Wakefulness and Arousal

[1]  J. Siegel,et al.  Highly Specific Role of Hypocretin (Orexin) Neurons: Differential Activation as a Function of Diurnal Phase, Operant Reinforcement versus Operant Avoidance and Light Level , 2011, The Journal of Neuroscience.

[2]  M. Lutter,et al.  Hcrtr1 and 2 signaling differentially regulates depression-like behaviors , 2011, Behavioural Brain Research.

[3]  Antoine Adamantidis,et al.  Optogenetic disruption of sleep continuity impairs memory consolidation , 2011, Proceedings of the National Academy of Sciences.

[4]  Edward S Boyden,et al.  Acute Optogenetic Silencing of Orexin/Hypocretin Neurons Induces Slow-Wave Sleep in Mice , 2011, The Journal of Neuroscience.

[5]  J. Livet,et al.  Generating and imaging multicolor Brainbow mice. , 2011, Cold Spring Harbor protocols.

[6]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[7]  David A. Knowles,et al.  Dichotomous cellular properties of mouse orexin/hypocretin neurons , 2011, The Journal of physiology.

[8]  B. Roth,et al.  Remote Control of Neuronal Signaling , 2011, Pharmacological Reviews.

[9]  B. Roth,et al.  Pharmacogenetic Modulation of Orexin Neurons Alters Sleep/Wakefulness States in Mice , 2011, Neuroscience Research.

[10]  Edward S. Boyden,et al.  A history of optogenetics: the development of tools for controlling brain circuits with light , 2011, F1000 biology reports.

[11]  L. Descarries,et al.  From glutamate co-release to vesicular synergy: vesicular glutamate transporters , 2011, Nature Reviews Neuroscience.

[12]  Randy M. Bruno,et al.  Effects and Mechanisms of Wakefulness on Local Cortical Networks , 2011, Neuron.

[13]  M. Mühlethaler,et al.  Sleep-Deprivation Regulates α-2 Adrenergic Responses of Rat Hypocretin/Orexin Neurons , 2011, PloS one.

[14]  Claire Wyart,et al.  Let there be light: zebrafish neurobiology and the optogenetic revolution , 2011, Reviews in the neurosciences.

[15]  A. Gourine,et al.  Optogenetic experimentation on astrocytes , 2011, Experimental physiology.

[16]  Michael Z. Lin,et al.  Toward the Second Generation of Optogenetic Tools , 2010, The Journal of Neuroscience.

[17]  K. Deisseroth,et al.  Tuning arousal with optogenetic modulation of locus coeruleus neurons , 2010, Nature Neuroscience.

[18]  K. Itoi,et al.  The Brainstem Noradrenergic Systems in Stress, Anxiety and Depression , 2010, Journal of neuroendocrinology.

[19]  Peter Hegemann,et al.  Evolution of the channelrhodopsin photocycle model. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  JaneR . Taylor,et al.  Orexin Signaling Via the Orexin 1 Receptor Mediates Operant Responding for Food Reinforcement , 2010, Biological Psychiatry.

[21]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[22]  C. Bourque,et al.  Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep , 2010, Nature Neuroscience.

[23]  Shuyun Dong,et al.  Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs , 2010, Nature Protocols.

[24]  E. Arrigoni,et al.  Activation of the basal forebrain by the orexin/hypocretin neurones , 2010, Acta physiologica.

[25]  J. Born,et al.  The memory function of sleep , 2010, Nature Reviews Neuroscience.

[26]  H. Pape,et al.  Neuropeptide S: A transmitter system in the brain regulating fear and anxiety , 2010, Neuropharmacology.

[27]  G. Miesenböck,et al.  The Optogenetic Catechism , 2009, Science.

[28]  Antoine Adamantidis,et al.  Sleep Homeostasis Modulates Hypocretin-Mediated Sleep-to-Wake Transitions , 2009, The Journal of Neuroscience.

[29]  L. de Lecea,et al.  The hypocretins and their role in narcolepsy. , 2009, CNS & neurological disorders drug targets.

[30]  T. Sakurai,et al.  Selective loss of GABAB receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture , 2009, Proceedings of the National Academy of Sciences.

[31]  S. Sara The locus coeruleus and noradrenergic modulation of cognition , 2009, Nature Reviews Neuroscience.

[32]  M. Walker The Role of Sleep in Cognition and Emotion , 2009, Annals of the New York Academy of Sciences.

[33]  O. Hassani,et al.  Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep–wake cycle , 2009, Proceedings of the National Academy of Sciences.

[34]  D. Burdakov,et al.  Metabolism-Independent Sugar Sensing in Central Orexin Neurons , 2008, Diabetes.

[35]  M. Carter,et al.  Sleep problems in a Down syndrome population , 2008, Archives of Disease in Childhood.

[36]  Lars Fugger,et al.  Adaptive sugar sensors in hypothalamic feeding circuits , 2008, Proceedings of the National Academy of Sciences.

[37]  R. DiLeone,et al.  Orexin Mediates the Expression of Precipitated Morphine Withdrawal and Concurrent Activation of the Nucleus Accumbens Shell , 2008, Biological Psychiatry.

[38]  K. Sakai,et al.  Neuronal activity of orexin and non-orexin waking-active neurons during wake–sleep states in the mouse , 2008, Neuroscience.

[39]  G. Miesenböck,et al.  Photocontrol of neural activity: biophysical mechanisms and performance in vivo. , 2008, Chemical reviews.

[40]  M. Lutter,et al.  Orexin Signaling Mediates the Antidepressant-Like Effect of Calorie Restriction , 2008, The Journal of Neuroscience.

[41]  Priyattam J Shiromani,et al.  Effects of Saporin-Induced Lesions of Three Arousal Populations on Daily Levels of Sleep and Wake , 2007, The Journal of Neuroscience.

[42]  K. Deisseroth,et al.  Neural substrates of awakening probed with optogenetic control of hypocretin neurons , 2007, Nature.

[43]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[44]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[45]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[46]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[47]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[48]  E. Hull,et al.  A Role for Hypocretin (Orexin) in Male Sexual Behavior , 2007, The Journal of Neuroscience.

[49]  Takeshi Sakurai,et al.  The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness , 2007, Nature Reviews Neuroscience.

[50]  G. Feng,et al.  Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits , 2006, The Journal of Neuroscience.

[51]  G. Aston-Jones,et al.  Arousal and reward: a dichotomy in orexin function , 2006, Trends in Neurosciences.

[52]  David Gozal,et al.  NREM sleep instability is reduced in children with attention-deficit/hyperactivity disorder. , 2006, Sleep.

[53]  Colin H. Brown,et al.  Mechanisms of rhythmogenesis: insights from hypothalamic vasopressin neurons , 2006, Trends in Neurosciences.

[54]  G. Koob,et al.  Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  G. Aston-Jones,et al.  A role for lateral hypothalamic orexin neurons in reward seeking , 2005, Nature.

[57]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[58]  Jonathan D. Cohen,et al.  An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. , 2005, Annual review of neuroscience.

[59]  O. Hassani,et al.  Discharge of Identified Orexin/Hypocretin Neurons across the Sleep-Waking Cycle , 2005, The Journal of Neuroscience.

[60]  J. Haller,et al.  The activation of raphe serotonergic neurons in normal and hypoarousal-driven aggression: A double labeling study in rats , 2005, Behavioural Brain Research.

[61]  Jerome M. Siegel,et al.  Behavioral Correlates of Activity in Identified Hypocretin/Orexin Neurons , 2005, Neuron.

[62]  A. Yamanaka,et al.  Input of Orexin/Hypocretin Neurons Revealed by a Genetically Encoded Tracer in Mice , 2005, Neuron.

[63]  M. Modirrousta,et al.  Orexin and MCH neurons express c‐Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors , 2005, The European journal of neuroscience.

[64]  M. Mühlethaler,et al.  The Wake-Promoting Hypocretin/Orexin Neurons Change Their Response to Noradrenaline after Sleep Deprivation , 2005, The Journal of Neuroscience.

[65]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[66]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  R. Palmiter,et al.  Norepinephrine-deficient mice exhibit normal sleep-wake states but have shorter sleep latency after mild stress and low doses of amphetamine. , 2003, Sleep.

[68]  Takeshi Sakurai,et al.  Hypothalamic Orexin Neurons Regulate Arousal According to Energy Balance in Mice , 2003, Neuron.

[69]  M. Tafti,et al.  Genetics of sleep and sleep disorders. , 2003, Frontiers in bioscience : a journal and virtual library.

[70]  Jon T. Willie,et al.  Involvement of the Lateral Hypothalamic Peptide Orexin in Morphine Dependence and Withdrawal , 2003, The Journal of Neuroscience.

[71]  C. Berridge,et al.  The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes , 2003, Brain Research Reviews.

[72]  J. Sutcliffe,et al.  The hypocretins: Setting the arousal threshold , 2002, Nature Reviews Neuroscience.

[73]  Jon T. Willie,et al.  Orexin (Hypocretin) Neurons Contain Dynorphin , 2001, The Journal of Neuroscience.

[74]  C. Saper,et al.  Fos Expression in Orexin Neurons Varies with Behavioral State , 2001, The Journal of Neuroscience.

[75]  C. Saper,et al.  Hypothalamic Arousal Regions Are Activated during Modafinil-Induced Wakefulness , 2000, The Journal of Neuroscience.

[76]  Luis de Lecea,et al.  Hypocretin-1 Modulates Rapid Eye Movement Sleep through Activation of Locus Coeruleus Neurons , 2000, The Journal of Neuroscience.

[77]  Sebastiaan Overeem,et al.  A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains , 2000, Nature Medicine.

[78]  C. Berridge,et al.  Synergistic sedative effects of noradrenergic α1- and β-receptor blockade on forebrain electroencephalographic and behavioral indices , 2000, Neuroscience.

[79]  A. Harvey,et al.  A prospective study of psychophysiological arousal, acute stress disorder, and posttraumatic stress disorder. , 2000, Journal of abnormal psychology.

[80]  J. Siegel,et al.  Locus coeruleus neurons: cessation of activity during cataplexy , 1999, Neuroscience.

[81]  A. N. van den Pol,et al.  Neurons Containing Hypocretin (Orexin) Project to Multiple Neuronal Systems , 1998, The Journal of Neuroscience.

[82]  S. Carr,et al.  Orexins and Orexin Receptors: A Family of Hypothalamic Neuropeptides and G Protein-Coupled Receptors that Regulate Feeding Behavior , 1998, Cell.

[83]  F E Bloom,et al.  The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[84]  A. Carlsson Neurocircuitries and neurotransmitter interactions in schizophrenia , 1995, International clinical psychopharmacology.

[85]  Richard T. Marrocco,et al.  Arousal systems , 1994, Current Opinion in Neurobiology.

[86]  J. Hardebo Influence of impulse pattern on noradrenaline release from sympathetic nerves in cerebral and some peripheral vessels. , 1992, Acta physiologica Scandinavica.

[87]  S. Foote,et al.  Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  G. Burnstock,et al.  Neuropeptide Y neuromodulation of sympathetic co‐transmission in the guinea‐pig vas deferens , 1990, British journal of pharmacology.

[89]  M. Kryger,et al.  Principles And Practice Of Sleep Medicine , 1989 .

[90]  M. Geyer,et al.  Behavior during hippocampal microinfusions. I. Norepinephrine and diversive exploration , 1982, Brain Research Reviews.

[91]  F. Bloom,et al.  Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  F. Bloom,et al.  Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Barbara E. Jones,et al.  Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat , 1977, Brain Research.

[94]  R. Hobson,et al.  Adrenergic mechanisms in the cephalic and cerebral circulations of the subhuman primate. , 1975, Surgery.

[95]  P. Lidbrink,et al.  The effect of lesions of ascending noradrenaline pathways on sleep and waking in the rat. , 1974, Brain research.

[96]  D. Segal,et al.  Behavioral activation of rats during intraventricular infusion of norepinephrine. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[97]  D. Pfaff,et al.  Molecular and biophysical mechanisms of arousal, alertness, and attention. Preface. , 2008, Annals of the New York Academy of Sciences.

[98]  K. Deisseroth,et al.  Circuit-breakers: optical technologies for probing neural signals and systems , 2007, Nature Reviews Neuroscience.

[99]  W. C. Hall,et al.  transgenic mice High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 , 2007 .

[100]  C. Berridge,et al.  Synergistic sedative effects of noradrenergic alpha(1)- and beta-receptor blockade on forebrain electroencephalographic and behavioral indices. , 2000, Neuroscience.