Ensemble differential evolution algorithm for CEC2011 problems

Differential Evolution (DE) is a simple yet efficient stochastic algorithm for solving real world problems. To achieve optimal performance with DE, time consuming parameter tuning is essential as its performance is sensitive to the choice of the mutation and crossover strategies and their associated control parameters. During different stages of DE's evolution, different combinations of mutation and crossover strategies with different parameter settings can be appropriate. Based on this observation different adaptive and self-adaptive techniques have been proposed. In this paper, we employ a DE with an ensemble of mutation and crossover strategies and their associated control parameters known as EPSDE. In EPSDE, a pool of distinct mutation and crossover strategies along with a pool of values for each control parameter coexists throughout the evolution process and competes to produce offspring. The performance of EPSDE is evaluated on a set of real world problems taken from different fields of engineering and presented in the technical report of Conference on Evolutionary Computation (CEC) 2011.

[1]  R. W. Derksen,et al.  Differential Evolution in Aerodynamic Optimization , 1999 .

[2]  Josef Tvrdík Adaptation in differential evolution: A numerical comparison , 2009, Appl. Soft Comput..

[3]  Ujjwal Maulik,et al.  Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery , 2009, Pattern Recognit..

[4]  Amit Konar,et al.  Automatic image pixel clustering with an improved differential evolution , 2009, Appl. Soft Comput..

[5]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[6]  Amit Konar,et al.  Two improved differential evolution schemes for faster global search , 2005, GECCO '05.

[7]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[8]  Amit Konar,et al.  Differential Evolution with Local Neighborhood , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[9]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[10]  Ponnuthurai Nagaratnam Suganthan,et al.  Fiber Bragg grating sensor array interrogation using differential evolution , 2008 .

[11]  Ponnuthurai N. Suganthan,et al.  Self-adaptive differential evolution with multi-trajectory search for large-scale optimization , 2011, Soft Comput..

[12]  Carlos A. Coello Coello,et al.  Modified Differential Evolution for Constrained Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[13]  Joni-Kristian Kämäräinen,et al.  Differential Evolution Training Algorithm for Feed-Forward Neural Networks , 2003, Neural Processing Letters.

[14]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[15]  Andries Petrus Engelbrecht,et al.  Self-adaptive Differential Evolution , 2005, CIS.

[16]  Arthur C. Sanderson,et al.  Minimal representation multisensor fusion using differential evolution , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[17]  Dana Petcu,et al.  Adaptive Pareto Differential Evolution and Its Parallelization , 2003, PPAM.

[18]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[19]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[20]  Daniela Zaharie,et al.  Influence of crossover on the behavior of Differential Evolution Algorithms , 2009, Appl. Soft Comput..

[21]  Xin Yao,et al.  Self-adaptive differential evolution with neighborhood search , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[22]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[23]  Jason Teo,et al.  Exploring dynamic self-adaptive populations in differential evolution , 2006, Soft Comput..

[24]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[25]  Xiaodong Li,et al.  Solving Rotated Multi-objective Optimization Problems Using Differential Evolution , 2004, Australian Conference on Artificial Intelligence.

[26]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[27]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[28]  Rainer Storn,et al.  Differential evolution design of an IIR-filter , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[29]  K. S. Swarup,et al.  Differential evolution approach for optimal reactive power dispatch , 2008, Appl. Soft Comput..

[30]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[31]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[32]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[33]  Ivan Zelinka,et al.  ON STAGNATION OF THE DIFFERENTIAL EVOLUTION ALGORITHM , 2000 .

[34]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.