Perfect Codes in Cayley Graphs

Given a graph $\Gamma$, a subset $C$ of $V(\Gamma)$ is called a perfect code in $\Gamma$ if every vertex of $\Gamma$ is at distance no more than one to exactly one vertex in $C$, and a subset $C$ of $V(\Gamma)$ is called a total perfect code in $\Gamma$ if every vertex of $\Gamma$ is adjacent to exactly one vertex in $C$. In this paper we study perfect codes and total perfect codes in Cayley graphs, with a focus on the following themes: when a subgroup of a given group is a (total) perfect code in a Cayley graph of the group; and how to construct new (total) perfect codes in a Cayley graph from known ones using automorphisms of the underlying group. We prove several results around these questions.

[1]  Michael Dinitz,et al.  Full Rank Tilings of Finite Abelian Groups , 2006, SIAM J. Discret. Math..

[2]  Haichao Wang,et al.  Efficient dominating sets in circulant graphs , 2017, Discret. Math..

[3]  Derek H. Smith Perfect codes in the graphs Ok and L(Ok) , 1980 .

[4]  A. D. Sands,et al.  Factoring Groups into Subsets , 2009 .

[5]  Sanming Zhou,et al.  Cyclotomic graphs, perfect codes and Frobenius circulants of valency $2p$ or $2p^2$ , 2015 .

[6]  Gwihen Etienne Perfect Codes and Regular Partitions in Graphs and Groups , 1987, Eur. J. Comb..

[7]  Italo J. Dejter,et al.  Efficient dominating sets in Cayley graphs , 2003, Discret. Appl. Math..

[8]  Jaeun Lee,et al.  Independent perfect domination sets in Cayley graphs , 2001 .

[9]  N. Biggs Perfect codes in graphs , 1973 .

[10]  Ramón Beivide,et al.  Quotients of Gaussian graphs and their application to perfect codes , 2010, J. Symb. Comput..

[11]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[12]  Sanming Zhou,et al.  Perfect codes in circulant graphs , 2017, Discret. Math..

[13]  Yun-Ping Deng Efficient dominating sets in circulant graphs with domination number prime , 2014, Inf. Process. Lett..

[14]  Moshe Schwartz,et al.  Codes and Anticodes in the Grassman Graph , 2002, J. Comb. Theory, Ser. A.

[15]  Gary MacGillivray,et al.  Efficient domination in circulant graphs , 2013, Discret. Math..

[16]  Sándor Szabó,et al.  Factoring Finite Abelian Groups by Subsets with Maximal Span , 2006, SIAM Journal on Discrete Mathematics.

[17]  C. Cooper Power automorphisms of a group , 1968 .

[18]  Derek H. Smith,et al.  Perfect codes in the graphs Ok , 1975 .

[19]  Ramón Beivide,et al.  Perfect Codes for Metrics Induced by Circulant Graphs , 2007, IEEE Transactions on Information Theory.

[20]  Olof Heden,et al.  A survey of perfect codes , 2008, Adv. Math. Commun..

[21]  Sanming Zhou Total perfect codes in Cayley graphs , 2016, Des. Codes Cryptogr..

[22]  Ramón Beivide,et al.  Perfect Codes From Cayley Graphs Over Lipschitz Integers , 2009, IEEE Transactions on Information Theory.

[23]  E. Schenkman On the norm of a group , 1960 .

[24]  Sachiyo Terada Perfect codes in SL(2, 2f) , 2004, Eur. J. Comb..

[25]  T. Tamizh Chelvam,et al.  Subgroups as efficient dominating sets in Cayley graphs , 2013, Discret. Appl. Math..

[26]  Jan Kratochvíl,et al.  Perfect codes over graphs , 1986, J. Comb. Theory, Ser. B.

[27]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[28]  Eiichi Bannai On Perfect Codes in the Hamming Schemes H(n, q) with q Arbitrary , 1977, J. Comb. Theory, Ser. A.

[29]  Georg Hajós,et al.  Über einfache und mehrfache Bedeckung desn-dimensionalen Raumes mit einem Würfelgitter , 1942 .

[30]  Joseph G. Peters,et al.  Efficient domination in circulant graphs with two chord lengths , 2007, Inf. Process. Lett..