Convergent Semidefinite Programming Relaxations for Global Bilevel Polynomial Optimization Problems

In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper-and the lower-level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a convex lower-level problem involves solving a transformed equivalent single-level problem by a sequence of SDP relaxations, whereas our approach for general problems involving a nonconvex polynomial lower-level problem solves a sequence of approximation problems via another sequence of SDP relaxations.

[1]  Kellen Petersen August Real Analysis , 2009 .

[2]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[3]  E. Bierstone,et al.  Semianalytic and subanalytic sets , 1988 .

[4]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[5]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..

[6]  Jean B. Lasserre,et al.  Min-max and robust polynomial optimization , 2011, J. Glob. Optim..

[7]  Stephan Dempe,et al.  Is bilevel programming a special case of a mathematical program with complementarity constraints? , 2012, Math. Program..

[8]  Vaithilingam Jeyakumar,et al.  Farkas’ lemma: three decades of generalizations for mathematical optimization , 2014 .

[9]  Jean B. Lasserre,et al.  A "Joint+Marginal" Approach to Parametric Polynomial Optimization , 2009, SIAM J. Optim..

[10]  Gui-Hua Lin,et al.  On solving simple bilevel programs with a nonconvex lower level program , 2014, Math. Program..

[11]  Pablo A. Parrilo,et al.  Semidefinite Programming Relaxations and Algebraic Optimization in Control , 2003, Eur. J. Control.

[12]  Pushpendra Kumar,et al.  An Overview On Bilevel Programming , 2012 .

[13]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[14]  Andreas Ritter,et al.  Handbook Of Test Problems In Local And Global Optimization , 2016 .

[15]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .

[16]  Pierre Hansen,et al.  Links Between Linear Bilevel and Mixed 0–1 Programming Problems , 1995 .

[17]  Masakazu Kojima,et al.  Algorithm 920: SFSDP: A Sparse Version of Full Semidefinite Programming Relaxation for Sensor Network Localization Problems , 2012, TOMS.

[18]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[19]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[20]  Vaithilingam Jeyakumar,et al.  Alternative Theorems for Quadratic Inequality Systems and Global Quadratic Optimization , 2009, SIAM J. Optim..

[21]  Markus Schweighofer,et al.  Optimization of Polynomials on Compact Semialgebraic Sets , 2005, SIAM J. Optim..

[22]  Jean B. Lasserre,et al.  On representations of the feasible set in convex optimization , 2009, Optim. Lett..

[23]  Vaithilingam Jeyakumar,et al.  On Polynomial Optimization Over Non-compact Semi-algebraic Sets , 2013, J. Optim. Theory Appl..

[24]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[25]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[26]  Masakazu Kojima,et al.  User Manual for SFSDP: a Sparse Version of Full SemiDefinite Programming Relaxation for Sensor Network Localization Problems , 2009 .

[27]  J. Morgan,et al.  New results on approximate solution in two-level optimization , 1989 .

[28]  Chris Miller,et al.  EXPONENTIATION IS HARD TO AVOID , 1994 .

[29]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[30]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[31]  Berç Rustem,et al.  Pessimistic Bilevel Optimization , 2013, SIAM J. Optim..

[32]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[33]  S. Kim,et al.  Semidefinite programming relaxation methods for global optimization problems with sparse polynomials and unbounded semialgebraic feasible sets , 2016, J. Glob. Optim..

[34]  Christodoulos A. Floudas,et al.  Global Optimization of Nonlinear Bilevel Programming Problems , 2001, J. Glob. Optim..

[35]  H. Gfrerer Hölder continuity of solutions of perturbed optimization problems under Mangasarian-Fromovitz constraint qualification , 1987 .

[36]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[37]  L. Dries,et al.  Geometric categories and o-minimal structures , 1996 .

[38]  Paul I. Barton,et al.  Global solution of bilevel programs with a nonconvex inner program , 2008, J. Glob. Optim..

[39]  Vaithilingam Jeyakumar,et al.  Convergence of the Lasserre hierarchy of SDP relaxations for convex polynomial programs without compactness , 2013, Oper. Res. Lett..