A Quantitative Study of Pure Parallel Processes

In this paper, we study the interleaving – or pure merge – operator that most often characterizes parallelism in concurrency theory. This operator is a principal cause of the so-called combinatorial explosion that makes the analysis of process behaviours e.g. by model-checking, very hard – at least from the point of view of computational complexity. The originality of our approach is to study this combinatorial explosion phenomenon on average, relying on advanced analytic combinatorics techniques. We study various measures that contribute to a better understanding of the process behaviours represented as plane rooted trees: the number of runs (corresponding to the width of the trees), the expected total size of the trees as well as their overall shape. Two practical outcomes of our quantitative study are also presented: (1) a linear-time algorithm to compute the probability of a concurrent run prefix, and (2) an efficient algorithm for uniform random sampling of concurrent runs. These provide interesting responses to the combinatorial explosion problem.

[1]  G. Pólya Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen , 1937 .

[2]  J. Moon,et al.  On the Altitude of Nodes in Random Trees , 1978, Canadian Journal of Mathematics.

[3]  Peter Winkler,et al.  Counting linear extensions is #P-complete , 1991, STOC '91.

[4]  Mike Zabrocki,et al.  Analytic aspects of the shuffle product , 2008, STACS.

[5]  Wayne D. Blizard,et al.  Multiset Theory , 1989, Notre Dame J. Formal Log..

[6]  David Bruce Wilson,et al.  Dyck tilings, increasing trees, descents, and inversions , 2012, J. Comb. Theory, Ser. A.

[7]  V. Reiner,et al.  Linear extension sums as valuations on cones , 2010, 1008.3278.

[8]  Luca Aceto,et al.  The Saga of the Axiomatization of Parallel Composition , 2007, CONCUR.

[9]  Olivier Bodini,et al.  The Combinatorics of Non-determinism , 2013, FSTTCS.

[10]  G. Pólya,et al.  Aufgaben und Lehrsätze aus der Analysis , 1926, Mathematical Gazette.

[11]  D. Shanks Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .

[12]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[13]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[14]  Konstantinos Panagiotou,et al.  Biased Boltzmann samplers and generation of extended linear languages with shuffle , 2012 .

[15]  Alain Denise,et al.  Coverage-biased Random Exploration of Models , 2008, Electron. Notes Theor. Comput. Sci..

[16]  Philippe Flajolet,et al.  Varieties of Increasing Trees , 1992, CAAP.

[17]  Olivier Bodini,et al.  Associativity for Binary Parallel Processes: A Quantitative Study , 2015, CALDAM.

[18]  Martin Klazar,et al.  Twelve Countings with Rooted Plane Trees , 1997, Eur. J. Comb..

[19]  W. E. H. B.,et al.  Aufgaben und Lehrsätze aus der Analysis. , 1925, Nature.

[20]  T. F. Móri On random trees , 2002 .

[21]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[22]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[23]  Saulo Alves de Araujo,et al.  Identification of novel keloid biomarkers through Profiling of Tissue Biopsies versus Cell Cultures in Keloid Margin specimens Compared to adjacent Normal Skin , 2010, Eplasty.

[24]  Paul F. Dietz Optimal Algorithms for List Indexing and Subset Rank , 1989, WADS.

[25]  W. Wasow Asymptotic expansions for ordinary differential equations , 1965 .

[26]  Radu Grosu,et al.  Monte Carlo Model Checking , 2005, TACAS.

[27]  Mike D. Atkinson,et al.  On computing the number of linear extensions of a tree , 1990 .

[28]  Stephan Merz,et al.  Model Checking , 2000 .

[29]  Mark Huber,et al.  Fast perfect sampling from linear extensions , 2006, Discret. Math..

[30]  Chak-Kuen Wong,et al.  An Efficient Method for Weighted Sampling Without Replacement , 1980, SIAM J. Comput..

[31]  Philippe Flajolet,et al.  Birthday Paradox, Coupon Collectors, Caching Algorithms and Self-Organizing Search , 1992, Discret. Appl. Math..

[32]  Edgar M. Palmer,et al.  On the number of trees in a random forest , 1979, J. Comb. Theory B.

[33]  Greta Panova,et al.  Dyck tilings, linear extensions, descents, and inversions , 2012 .

[34]  Bruno Salvy,et al.  GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.

[35]  Doron Rotem,et al.  Random sampling from databases: a survey , 1995 .

[36]  Alain Connes,et al.  Hopf Algebras, Renormalization and Noncommutative Geometry , 1998 .

[37]  Jos C. M. Baeten,et al.  Process Algebra , 2007, Handbook of Dynamic System Modeling.

[38]  Jean-Yves Thibon,et al.  Noncommutative Symmetric Functions VII: Free Quasi-Symmetric Functions Revisited , 2008, 0809.4479.

[39]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[40]  Frédéric Chyzak,et al.  An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..

[41]  O. Bodini,et al.  Enumeration and Random Generation of Concurrent Computations , 2012 .

[42]  P. Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[43]  Richard P. Stanley,et al.  Differentiably Finite Power Series , 1980, Eur. J. Comb..