Marginal Material Stability

Marginal stability plays an important role in nonlinear elasticity because the associated minimally stable states usually delineate failure thresholds. In this paper we study the local (material) aspect of marginal stability. The weak notion of marginal stability at a point, associated with the loss of strong ellipticity, is classical. States that are marginally stable in the strong sense are located at the boundary of the quasi-convexity domain and their characterization is the main goal of this paper. We formulate a set of bounds for such states in terms of solvability conditions for an auxiliary nucleation problem formulated in the whole space and present nontrivial examples where the obtained bounds are tight.

[1]  Michael Zaiser,et al.  Scale invariance in plastic flow of crystalline solids , 2006 .

[2]  Detecting stress fields in an optimal structure Part II: Three-dimensional case , 2004 .

[3]  James K. Knowles,et al.  On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics , 1978 .

[4]  A. Roytburd,et al.  Deformation of Adaptive Materials , 1999 .

[5]  Georg Dolzmann,et al.  Variational Methods for Crystalline Microstructure - Analysis and Computation , 2003 .

[6]  Louis Van Hove,et al.  Sur l'extension de la condition de Legendre du calcul de variations aux intégrales multiples à plusieurs fonctions inconnues , 1947 .

[7]  Konstantin A. Lurie,et al.  Applied Optimal Control Theory of Distributed Systems , 1993 .

[8]  E. Sternberg,et al.  Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids , 1983 .

[9]  Toshio Mura,et al.  The Elastic Field Outside an Ellipsoidal Inclusion , 1977 .

[10]  A. Compagner On Metastable States , 1969 .

[11]  Lev Truskinovsky,et al.  Thermodynamics of rate-independent plasticity , 2005 .

[12]  Y. Grabovsky,et al.  The flip side of buckling , 2007 .

[13]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .

[14]  J. Ball Some Open Problems in Elasticity , 2002 .

[15]  Unione matematica italiana Lecture notes of the Unione matematica italiana , 2006 .

[16]  Subrata Mukherjee,et al.  Shape Sensitivity Analysis , 2005, Encyclopedia of Continuum Mechanics.

[17]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.

[18]  Alan Weinstein,et al.  Geometry, Mechanics, and Dynamics , 2002 .

[19]  F. Murat,et al.  Remarks on Chacon’s biting lemma , 1989 .

[20]  Hlawka The calculus of variations in the large , 1939 .

[21]  J. Michel,et al.  Microscopic and macroscopic instabilities in finitely strained porous elastomers , 2007 .

[22]  I. Kunin,et al.  Stress concentration on an ellipsoidal inhomogeneity in an anisotropic elastic medium: PMM vol. 37, n≗2, 1973, pp. 306–315 , 1973 .

[23]  Stefan Müller,et al.  Energy barriers and hysteresis in martensitic phase transformations , 2009 .

[24]  Rodney Hill,et al.  On uniqueness and stability in the theory of finite elastic strain , 1957 .

[25]  Pablo Pedregal,et al.  Fully explicit quasiconvexification of the mean-square deviation of the gradient of the state in optimal design , 2001 .

[26]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[27]  B. Brunt The calculus of variations , 2003 .

[28]  R. Hill On the elasticity and stability of perfect crystals at finite strain , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  A. Cherkaev,et al.  Optimal anisotropic three-phase conducting composites. Plane problem , 2010, 1009.3060.

[30]  Y. Grabovsky Bounds and extremal microstructures for two-component composites: a unified treatment based on the translation method , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  S. Vigdergauz Two-Dimensional Grained Composites of Extreme Rigidity , 1994 .

[32]  Stefano Zapperi,et al.  Statistical models of fracture , 2006, cond-mat/0609650.

[33]  Wolfgang Desch,et al.  Progress in nonlinear differential equations and their applications, Vol. 80 , 2011 .

[34]  S. Vigdergauz Integral equation of the inverse problem of the plane theory of elasticity: PMM vol. 40, n≗ 3, 1976, pp. 566–569 , 1976 .

[35]  S. Spector,et al.  An isoperimetric estimate and W $^{1,p}$-quasiconvexity in nonlinear elasticity , 1999 .

[36]  Bernard Dacorogna,et al.  Quasiconvexity and relaxation of nonconvex problems in the calculus of variations , 1982 .

[37]  Peter W. Bates,et al.  The Dynamics of Nucleation for the Cahn-Hilliard Equation , 1993, SIAM J. Appl. Math..

[38]  Miroslav Šilhavý,et al.  The Mechanics and Thermodynamics of Continuous Media , 2002 .

[39]  Victor L. Berdichevsky,et al.  Variational Principles of Continuum Mechanics , 2009 .

[40]  Andrej Cherkaev,et al.  Detecting stress fields in an optimal structure Part I: Two-dimensional case and analyzer , 2004 .

[41]  J. K. Knowles,et al.  On the ellipticity of the equations of nonlinear elastostatics for a special material , 1975 .

[42]  M. Morse The Calculus of Variations in the Large , 1934 .

[43]  L. Truskinovsky,et al.  On the critical nature of plastic flow: one and two dimensional models , 2012, 1202.4753.

[44]  A. Freidin On new phase inclusions in elastic solids , 2007 .

[45]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[46]  I. Kunin,et al.  An ellipsoidal crack and needle in an anisotropic elastic medium: PMM vol. 37, n≗3, 1973, pp. 524–531 , 1973 .

[47]  Sergio Gutiérrez,et al.  Laminations in Linearized Elasticity: The Isotropic Non-very Strongly Elliptic Case , 1998 .

[48]  A. Roytburd,et al.  Deformation of adaptive materials. Part III: Deformation of crystals with polytwin product phases , 2001 .

[49]  S. Muller,et al.  Convex integration for Lipschitz mappings and counterexamples to regularity , 2003 .

[50]  R. Kohn,et al.  Minimal energy for elastic inclusions , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[51]  B. M. Fulk MATH , 1992 .

[52]  R. Abeyaratne,et al.  Dilatationally nonlinear elastic materials—I. Some theory , 1989 .

[53]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[54]  J. Ball,et al.  Discontinuous equilibrium solutions and cavitation in nonlinear elasticity , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[55]  Radially symmetric cavitation for hyperelastic materials , 1985 .

[56]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[57]  L. Truskinovsky,et al.  Ericksen's bar revisited : Energy wiggles , 1996 .

[58]  Pablo Pedregal,et al.  Characterizations of young measures generated by gradients , 1991 .

[59]  L. C. Young,et al.  Generalized Surfaces in the Calculus of Variations. II , 1942 .

[60]  S. Suresh,et al.  Elastic criterion for dislocation nucleation , 2004 .

[61]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[62]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[63]  Stefan Hildebrandt,et al.  The Lagrangian formalism , 1996 .

[64]  Jan Kristensen,et al.  On the non-locality of quasiconvexity , 1999 .

[65]  John W. Hutchinson,et al.  Continuum theory of dilatant transformation toughening in ceramics , 1983 .

[66]  P. G. Ciarlet,et al.  Three-dimensional elasticity , 1988 .

[67]  S. Antman Nonlinear problems of elasticity , 1994 .

[68]  A. Cherkaev Detecting stress elds in an optimal structure I Two-dimensional case and analyzer , 2022 .

[69]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[70]  J. D. Eshelby Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics , 1999 .

[71]  D. Kinderlehrer,et al.  Remarks about Equilibrium Configurations of Crystals , 1987 .

[72]  R. Toupin,et al.  Implications Of Hadamard's Conditions For Elastic Stability With Respect To Uniqueness Theorems , 1956, Canadian Journal of Mathematics.

[73]  Y. Grabovsky Nonsmooth analysis and quasi-convexification in elastic energy minimization problems , 1995 .

[74]  J. D. Eshelby The elastic energy-momentum tensor , 1975 .

[75]  J. Craggs Applied Mathematical Sciences , 1973 .

[76]  L. Young Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .

[77]  David Kinderlehrer,et al.  Equilibrium configurations of crystals , 1988 .

[78]  Jerrold E. Marsden,et al.  Quasiconvexity at the boundary, positivity of the second variation and elastic stability , 1984 .

[79]  Robert V. Kohn,et al.  Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. , 1994 .

[80]  L. Mahadevan,et al.  Unfolding the sulcus. , 2010, Physical review letters.

[81]  Kaushik Bhattacharya,et al.  The Relaxation of Two-well Energies with Possibly Unequal Moduli , 2008 .

[82]  Luc Tartar,et al.  The General Theory of Homogenization , 2010 .

[83]  L. C. Young,et al.  Generalized Surfaces in the Calculus of Variations , 1942 .

[84]  M. Gurtin,et al.  Configurational Forces as Basic Concepts of Continuum Physics , 1999 .

[85]  PDEs and Continuum Models of Phase Transitions , 1989 .

[86]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[87]  R. Fosdick,et al.  A note on non-uniqueness in linear elasticity theory , 1968 .

[88]  P. Pedregal Parametrized measures and variational principles , 1997 .

[89]  John M. Ball,et al.  Strict convexity, strong ellipticity, and regularity in the calculus of variations , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[90]  Robert V. Kohn,et al.  Explicit optimal bounds on the elastic energy of a two-phase composite in two space dimensions , 1993 .

[91]  G. P. Cherepanov Inverse problems of the plane theory of elasticity: PMM vol. 38, n≗ 6, 1974, pp. 963–979 , 1974 .

[92]  H. Simpson,et al.  Necessary conditions at the boundary for minimizers in finite elasticity , 1989 .

[93]  D. C. Drucker,et al.  Mechanics of Incremental Deformation , 1965 .

[94]  Toyoichi Tanaka,et al.  Mechanical instability of gels at the phase transition , 1987, Nature.

[95]  H. Simpson,et al.  On barrelling instabilities in finite elasticity , 1984 .

[96]  R. Kohn,et al.  Optimal design and relaxation of variational problems, III , 1986 .

[97]  Luc Tartar,et al.  The General Theory of Homogenization: A Personalized Introduction , 2009 .

[98]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[99]  H. Simpson,et al.  On Bifurcation in Finite Elasticity: Buckling of a Rectangular Rod , 2008 .

[100]  K. A. Lur'e Optimum control of conductivity of a fluid moving in a channel in a magnetic field , 1964 .

[101]  Andrej Cherkaev,et al.  Design of Composite Plates of Extremal Rigidity , 1997 .

[102]  F. Otto,et al.  Nucleation Barriers for the Cubic‐to‐Tetragonal Phase Transformation , 2013 .

[103]  John M. Ball,et al.  Regularity of quasiconvex envelopes , 2000 .

[104]  Ines Gloeckner,et al.  Variational Methods for Structural Optimization , 2002 .

[105]  Crackling Noise and Avalanches: Scaling, Critical Phenomena, and the Renormalization Group , 2006, cond-mat/0612418.

[106]  Nucleation of austenite in mechanically stabilized martensite by localized heating , 2013 .

[107]  Robert V. Kohn,et al.  The relaxation of a double-well energy , 1991 .

[108]  N. Triantafyllidis,et al.  Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity , 1993 .

[109]  L. Truskinovskii,et al.  Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium☆ , 1987 .

[110]  A. Roytburd,et al.  Deformation of adaptive materials. Part II. Adaptive composite , 1999 .

[111]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[112]  L. Young,et al.  Lectures on the Calculus of Variations and Optimal Control Theory. , 1971 .

[113]  H. Simpson,et al.  On the positivity of the second variation in finite elasticity , 1987 .

[114]  A. Roytburd,et al.  Deformation of adaptive materials. Part I. Constrained deformation of polydomain crystals , 1999 .

[115]  Anaël Lemaître,et al.  Universal breakdown of elasticity at the onset of material failure. , 2004, Physical review letters.

[116]  Robert V. Kohn,et al.  Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials , 1993 .

[117]  J. Kánnár On the existence of C∞ solutions to the asymptotic characteristic initial value problem in general relativity , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[118]  M. F. Kanninen,et al.  Inelastic Behavior of Solids , 1970, Science.

[119]  M. Crandall,et al.  Bifurcation from simple eigenvalues , 1971 .

[120]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[121]  J. Sethna Course 6 Crackling noise and avalanches: Scaling, critical phenomena, and the renormalization group , 2007 .

[122]  Bernard Dacorogna Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension , 2001 .

[123]  J. Ball A version of the fundamental theorem for young measures , 1989 .

[124]  Alexander Mielke,et al.  Quasiconvexity at the Boundary and a Simple Variational Formulation of Agmon's Condition , 1998 .

[125]  Y. Grabovsky,et al.  Roughening Instability of Broken Extremals , 2011 .