The application of graphene based materials for actuators

Compared with traditional actuation materials, such as piezoelectric, ferroelectric and conducting polymer materials which suffered from low flexibility, high driving voltages and low energy efficiency, graphene exhibits outstanding mechanical, electrical, optical properties and chemical stability, which made it a good candidate for actuation materials. In this review, the recent progress in graphene based actuators induced by electric, electrochemical, optical and other stimulations are summarized. Different actuation mechanisms and future developments are discussed. Graphene based materials, combining their many excellent properties, such as material abundance, super mechanical strength with excellent actuation performance, are expected to have great potential for the application in next generation actuators.

[1]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[2]  Yuexian Liu,et al.  Enhanced Electromechanical Performance of Graphene Oxide-Nafion Nanocomposite Actuator , 2015 .

[3]  Il-Kwon Oh,et al.  Electro-active graphene–Nafion actuators , 2011 .

[4]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[5]  Il-Kwon Oh,et al.  Selective growth of platinum electrodes for MDOF IPMC actuators , 2009 .

[6]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[7]  D. Cai,et al.  Recent advance in functionalized graphene/ polymer nanocomposites , 2010 .

[8]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[9]  R. Vaia,et al.  Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers , 2004, Nature materials.

[10]  Hisaaki Tobushi,et al.  Thermomechanical properties in a thin film of shape memory polymer of polyurethane series , 1996 .

[11]  Yang Wang,et al.  Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. , 2008, Nano letters.

[12]  Eugene M. Terentjev,et al.  Photomechanical actuation in polymer–nanotube composites , 2005, Nature materials.

[13]  Hua Bai,et al.  Functional Composite Materials Based on Chemically Converted Graphene , 2011, Advanced materials.

[14]  Il-Kwon Oh,et al.  Snap-through dynamics of buckled IPMC actuator , 2010 .

[15]  B. Panchapakesan,et al.  Photomechanical responses of carbon nanotube/polymer actuators , 2007 .

[16]  E. M. Terentjev,et al.  Infrared actuation in aligned polymer-nanotube composites , 2006, cond-mat/0602185.

[17]  R. Ruoff,et al.  Graphene and Graphene Oxide: Synthesis, Properties, and Applications , 2010, Advanced materials.

[18]  S. Nutt,et al.  Characterization of nanocellulose‐ reinforced shape memory polyurethanes , 2008 .

[19]  Emílio Carlos Nelli Silva,et al.  A biomimetic piezoelectric pump: Computational and experimental characterization , 2009 .

[20]  Kwang J. Kim,et al.  Ionic polymer–metal composite bending actuator loaded with multi-walled carbon nanotubes , 2007 .

[21]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[22]  Geoffrey M. Spinks,et al.  Multiwalled Carbon Nanotube Actuators , 2005 .

[23]  Ji Won Suk,et al.  Graphene-based actuators. , 2010, Small.

[24]  S. Stankovich,et al.  Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets , 2006 .

[25]  L. Brinson,et al.  Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.

[26]  R. Yoshida,et al.  Self‐Walking Gel , 2007 .

[27]  Yuyuan Tian,et al.  Measurement of the quantum capacitance of graphene. , 2009, Nature nanotechnology.

[28]  Chaohe Xu,et al.  Fibrous nanocomposites of carbon nanotubes and graphene-oxide with synergetic mechanical and actuative performance. , 2011, Chemical communications.

[29]  Zhuang Liu,et al.  Nano-graphene oxide for cellular imaging and drug delivery , 2008, Nano research.

[30]  S. Nguyen,et al.  Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. , 2010, Small.

[31]  Mei Zhang,et al.  Carbon Nanotube Yarns as High Load Actuators and Sensors , 2008 .

[32]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[33]  C. N. Lau,et al.  Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. , 2009, Nature nanotechnology.

[34]  L. Qu,et al.  Load-tolerant, highly strain-responsive graphene sheets , 2011 .

[35]  Sung-Weon Yeom,et al.  A biomimetic jellyfish robot based on ionic polymer metal composite actuators , 2009 .

[36]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[37]  Jiyoung Oh,et al.  Thermal actuation of graphene oxide nanoribbon mats , 2011 .

[38]  J. Jang,et al.  Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing. , 2011, Chemical communications.

[39]  Chunyu Li,et al.  Sensors and actuators based on carbon nanotubes and their composites: A review , 2008 .

[40]  Jong-Oh Park,et al.  Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs) , 2005 .

[41]  J. Madden,et al.  Electrochemical actuation of carbon nanotube yarns , 2007 .

[42]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[43]  R. Baughman Conducting polymer artificial muscles , 1996 .

[44]  J. Madden,et al.  Polymer artificial muscles , 2007 .

[45]  S. Fang,et al.  Electromechanical Actuators Based on Graphene and Graphene/Fe3O4 Hybrid Paper , 2011 .

[46]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[47]  R. Car,et al.  Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite , 2007 .

[48]  Shaoqin Gong,et al.  Reversible Infrared Actuation of Carbon Nanotube–Liquid Crystalline Elastomer Nanocomposites , 2008 .

[49]  Klaus Kern,et al.  Electronic transport properties of individual chemically reduced graphene oxide sheets. , 2007, Nano letters.

[50]  R. Stoltenberg,et al.  Evaluation of solution-processed reduced graphene oxide films as transparent conductors. , 2008, ACS nano.

[51]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[52]  Yongsheng Chen,et al.  Flexible, Magnetic, and Electrically Conductive Graphene/Fe3O4 Paper and Its Application for Magnetic-Controlled Switches , 2010 .

[53]  Feng-kui Li,et al.  Polyurethane/conducting carbon black composites: Structure, electric conductivity, strain recovery behavior, and their relationships , 2000 .

[54]  Jong-Hyun Ahn,et al.  Graphene-based bimorph microactuators. , 2011, Nano letters.

[55]  L. Qu,et al.  An asymmetrically surface-modified graphene film electrochemical actuator. , 2010, ACS nano.

[56]  I. Oh,et al.  A Biomimetic Actuator Based on an Ionic Networking Membrane of Poly(styrene‐alt‐maleimide)‐Incorporated Poly(vinylidene fluoride) , 2008 .

[57]  Geoffrey M. Spinks,et al.  Carbon nanotube and polyaniline composite actuators , 2003 .

[58]  A. Lendlein,et al.  Polymers Move in Response to Light , 2006 .

[59]  Alar Jänes,et al.  Electroactive polymer actuators with carbon aerogel electrodes , 2011 .

[60]  E. Terentjev,et al.  UV isomerisation in nematic elastomers as a route to photo-mechanical transducer , 2002, The European physical journal. E, Soft matter.

[61]  K. Novoselov,et al.  Macroscopic graphene membranes and their extraordinary stiffness. , 2008, Nano letters.

[62]  Robert A. Barton,et al.  Large-scale arrays of single-layer graphene resonators. , 2010, Nano letters.

[63]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[64]  Klaus Kern,et al.  Elastic properties of chemically derived single graphene sheets. , 2008, Nano letters.

[65]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[66]  I. Aksay,et al.  Tuning of structural color using a dielectric actuator and multifunctional compliant electrodes. , 2010, Applied optics.

[67]  Yan Wang,et al.  Infrared-Triggered Actuators from Graphene-Based Nanocomposites , 2009 .

[68]  Robert A. Barton,et al.  Free-standing epitaxial graphene. , 2009, Nano letters.