A novel lead-free NaNbO3–Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability

[1]  S. Qu,et al.  A new family of sodium niobate-based dielectrics for electrical energy storage applications , 2019, Journal of the European Ceramic Society.

[2]  Y. Pu,et al.  High Insulation Resistivity and Ultralow Dielectric Loss in La-Doped SrTiO3 Colossal Permittivity Ceramics through Defect Chemistry Optimization , 2019, ACS Sustainable Chemistry & Engineering.

[3]  Genshui Wang,et al.  Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications , 2019, Journal of Materials Chemistry C.

[4]  Y. Pu,et al.  Flash sintering of barium titanate , 2019, Ceramics International.

[5]  F. Gao,et al.  Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties , 2019, Nano Energy.

[6]  Y. Pu,et al.  Influence of BaZrO3 additive on the energy-storage properties of 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 relaxor ferroelectrics , 2019, Journal of Alloys and Compounds.

[7]  R. Zuo,et al.  Stable antiferroelectricity with incompletely reversible phase transition and low volume-strain contribution in BaZrO3 and CaZrO3 substituted NaNbO3 ceramics , 2018, Acta Materialia.

[8]  Ying Chen,et al.  Ultrahigh recoverable energy storage density and efficiency in barium strontium titanate-based lead-free relaxor ferroelectric ceramics , 2018, Applied Physics Letters.

[9]  X. Dong,et al.  Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy , 2018 .

[10]  Y. Pu,et al.  High-energy storage performance in lead-free (0.8-x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3 relaxor ferroelectric ceramics , 2018 .

[11]  Yongfei Cui,et al.  High Energy Storage Density and Optical Transparency of Microwave Sintered Homogeneous (Na0.5Bi0.5)(1–x)BaxTi(1–y)SnyO3 Ceramics , 2018 .

[12]  C. Randall,et al.  Stabilized antiferroelectricity in xBiScO3-(1-x)NaNbO3 lead-free ceramics with established double hysteresis loops , 2018 .

[13]  Y. Pu,et al.  Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics , 2017 .

[14]  Hong Wang,et al.  Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties , 2017 .

[15]  Zhuo Xu,et al.  Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage , 2017 .

[16]  X. Dong,et al.  High-energy storage performance in lead-free (1-x)BaTiO3-xBi(Zn0.5Ti0.5)O3 relaxor ceramics for temperature stability applications , 2017 .

[17]  Jingfeng Li,et al.  Lead‐Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance , 2017, Advanced materials.

[18]  Lumen Chao,et al.  Macroscopic ferroelectricity and piezoelectricity in nanostructured NaNbO3 ceramics , 2017 .

[19]  J. Zhai,et al.  Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics , 2017 .

[20]  Jiafu Wang,et al.  Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics , 2016 .

[21]  C. Randall,et al.  Direct evidence of an incommensurate phase in NaNbO3 and its implication in NaNbO3-based lead-free antiferroelectrics , 2015 .

[22]  C. Randall,et al.  Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1−x)NaNbO3-xSrZrO3 solid solution , 2015 .

[23]  A. Molak,et al.  Dielectric Properties of NaNbO3 Ceramics , 2015 .

[24]  Xiaoyong Wei,et al.  Relaxor Ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 Ceramics for Energy Storage Application , 2015 .

[25]  C. Randall,et al.  Advantages of Low Partial Pressure of Oxygen Processing of Alkali Niobate: NaNbO3 , 2014 .

[26]  Guangzu Zhang,et al.  Y doping and grain size co-effects on the electrical energy storage performance of (Pb0.87Ba0.1La0.02) (Zr0.65Sn0.3Ti0.05)O3 anti-ferroelectric ceramics , 2014 .

[27]  J. Ge,et al.  Effect of residual stress on energy storage property in PbZrO3 antiferroelectric thin films with different orientations , 2013 .

[28]  Hao Wang,et al.  Preparation and Piezoelectricity of NaNbO3 High‐Density Ceramics by Molten Salt Synthesis , 2011 .

[29]  X. Tan,et al.  The Antiferroelectric ↔ Ferroelectric Phase Transition in Lead-Containing and Lead-Free Perovskite Ceramics , 2011 .

[30]  Venkata Sreenivas Puli,et al.  Barium zirconate-titanate/barium calcium-titanate ceramics via sol–gel process: novel high-energy-density capacitors , 2011, Journal of Physics D: Applied Physics.

[31]  Genshui Wang,et al.  Charge-discharge properties of lead zirconate stannate titanate ceramics , 2009 .

[32]  K. Younsi,et al.  The future of nanodielectrics in the electrical power industry , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[33]  L. A. Shilkina,et al.  A new phase transition in sodium niobate , 2000 .

[34]  Jenn-Shyong Hwang,et al.  Phase transition of LixNa1−xNbO3 studied by Raman scattering method , 1999 .

[35]  A. Molak The influence of reduction in valency of Nb ions on the antiferroelectric phase transition in NaNbO3 , 1987 .

[36]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[37]  C. Darlington,et al.  The low-temperature phase transition of sodium niobate and the structure of the low-temperature phase, N , 1973 .

[38]  A. Glazer,et al.  Studies of the lattice parameters and domains in the phase transitions of NaNbO3 , 1973 .

[39]  M. Ahtee,et al.  The structures of sodium niobate between 480° and 575°C, and their relevance to soft-phonon modes , 1972 .

[40]  H. Megaw,et al.  The structure of sodium niobate at room temperature, and the problem of reliability in pseudosymmetric structures , 1969 .

[41]  R. Newnham,et al.  Dielectric Properties and Phase Transitions of NaNbO3 and (Na,K)NbO3 , 1954 .

[42]  Y. Pu,et al.  High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics , 2020 .

[43]  Fei Li,et al.  Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures , 2014, Progress in Advanced Dielectrics.

[44]  R. Zeyfang,et al.  Dielectric and Electromechanical Properties of (Li, Na)NbO3 Ceramics , 1977 .