Iterative Substructuring Methods for Spectral Element Discretizations of Elliptic Systems. II: Mixed Methods for Linear Elasticity and Stokes Flow

Iterative substructuring methods are introduced and analyzed for saddle point problems with a penalty term. Two examples of saddle point problems are considered: The mixed formulation of the linear elasticity system and the generalized Stokes system in three dimensions. These problems are discretized with %mixed spectral element methods. The resulting stiffness matrices are symmetric and indefinite. The interior unknowns of each element are first implicitly eliminated by using exact local solvers. The resulting saddle point Schur complement is solved with a Krylov space method with block preconditioners. The velocity block can be approximated by a domain decomposition method, e.g., of wire basket type, which is constructed from a local solver for each face of the elements, and a coarse solver related to the wire basket of the elements. The condition number of the preconditioned operator is independent of the number of spectral elements and is bounded from above by the product of the square of the logarithm of the spectral degree and the inverse of the discrete inf-sup constant of the problem.

[1]  Ragnar Winther,et al.  A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..

[2]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[3]  Axel Klawonn,et al.  An Optimal Preconditioner for a Class of Saddle Point Problems with a Penalty Term , 1995, SIAM J. Sci. Comput..

[4]  Claudio Canuto,et al.  Bubble-stabilized spectral methods for the incompressible Navier-Stokes equations , 1996 .

[5]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[6]  Luca F. Pavarino,et al.  Preconditioned Mixed Spectral Element Methods for Elasticity and Stokes Problems , 1998, SIAM J. Sci. Comput..

[7]  Howard C. Elman,et al.  Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..

[8]  R. Stenberg,et al.  Mixed $hp$ finite element methods for problems in elasticity and Stokes flow , 1996 .

[9]  K. Bathe,et al.  The inf-sup test , 1993 .

[10]  J. Pasciak,et al.  A domain decomposition technique for Stokes problems , 1990 .

[11]  O. Widlund,et al.  Schwarz Methods of Neumann-Neumann Type for Three-Dimensional Elliptic Finite Element Problems , 1993 .

[12]  Yvon Maday,et al.  UNIFORM INF–SUP CONDITIONS FOR THE SPECTRAL DISCRETIZATION OF THE STOKES PROBLEM , 1999 .

[13]  Olof B. Widlund,et al.  Iterative Substructuring Methods for Spectral Elements: Problems in Three Dimensions Based on Numerical Quadrature , 1997 .

[14]  Mario A. Casarin Schwarz Preconditioners for Spectral and Mortar Finite Element Methods with Applications to Incompressible Fluids , 1996 .

[15]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[16]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[17]  Luca F. Pavarino,et al.  Domain Decomposition Algorithms for Saddle Point Problems , 1998 .

[18]  Barry F. Smith,et al.  Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions , 1994 .

[19]  R. Stenberg Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .

[20]  Paul Fischer,et al.  Spectral element methods for large scale parallel Navier—Stokes calculations , 1994 .

[21]  Susanne C. Brenner,et al.  Multigrid methods for parameter dependent problems , 1996 .

[22]  Luca F. Pavarino Neumann-Neumann algorithms for spectral elements in three dimensions , 1997 .

[23]  Olof B. Widlund,et al.  A Polylogarithmic Bound for an Iterative Substructuring Method for Spectral Elements in Three Dimensions , 1996 .

[24]  Rolf Stenberg,et al.  Mixed Hp Nite Element Methods for Problems in Elasticity and Stokes Ow , 1994 .

[25]  Olof B. Widlund,et al.  Iterative Substructuring Methods for Spectral Element Discretizations of Elliptic Systems I: Compressible Linear Elasticity , 1999, SIAM J. Numer. Anal..

[26]  A. Klawonn Preconditioners for Indefinite Problems , 1996 .

[27]  Anthony T. Patera,et al.  Analysis of Iterative Methods for the Steady and Unsteady Stokes Problem: Application to Spectral Element Discretizations , 1993, SIAM J. Sci. Comput..

[28]  Luca F. Pavarino,et al.  Preconditioned conjugate residual methods for mixed spectral discretizations of elasticity and Stokes problems , 1997 .

[29]  Susanne C. Brenner A nonconforming mixed multigrid method for the pure traction problem in planar linear elasticity , 1994 .

[30]  P. Tallec Domain decomposition methods in computational mechanics , 1994 .

[31]  R. A. Nicolaides,et al.  STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .

[32]  O. Widlund,et al.  Iterative substructuring methods for spectral element discretizations of elliptic systems in three dimensions , 2000 .

[33]  I. Babuska,et al.  Locking effects in the finite element approximation of elasticity problems , 1992 .

[34]  S. C. Brenner,et al.  A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity , 1993 .

[35]  D. Yang Stabilized Schemes for Mixed Finite Element Methods with Applications to Elasticity and Compressible , 1997 .

[36]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[37]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[38]  Abani K. Patra,et al.  Non-overlapping domain decomposition methods for adaptive hp approximations of the Stokes problem with discontinuous pressure fields , 1997 .

[39]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[40]  Claudio Canuto,et al.  Stabilization of spectral methods by finite element bubble functions , 1994 .

[41]  Axel Klawonn,et al.  Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..