Physiological and ecological implications of an iron- or hydrogen-oxidizing member of the Zetaproteobacteria, Ghiorsea bivora, gen. nov., sp. nov.

[1]  C. Moyer,et al.  Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc , 2017, Front. Microbiol..

[2]  C. Moyer,et al.  Hidden diversity revealed by genome-resolved metagenomics of iron-oxidizing microbial mats from Lō’ihi Seamount, Hawai’i , 2017, The ISME Journal.

[3]  Shinro Nishi,et al.  Mariprofundus micogutta sp. nov., a novel iron-oxidizing zetaproteobacterium isolated from a deep-sea hydrothermal field at the Bayonnaise knoll of the Izu-Ogasawara arc, and a description of Mariprofundales ord. nov. and Zetaproteobacteria classis nov. , 2017, Archives of Microbiology.

[4]  M. Horn,et al.  IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies , 2016, Scientific Reports.

[5]  A. Mumford,et al.  Peeking under the Iron Curtain: Development of a Microcosm for Imaging the Colonization of Steel Surfaces by Mariprofundus sp. Strain DIS-1, an Oxygen-Tolerant Fe-Oxidizing Bacterium , 2016, Applied and Environmental Microbiology.

[6]  B. Glazer,et al.  The Architecture of Iron Microbial Mats Reflects the Adaptation of Chemolithotrophic Iron Oxidation in Freshwater and Marine Environments , 2016, Front. Microbiol..

[7]  D. Emerson,et al.  In Situ Microbial Community Succession on Mild Steel in Estuarine and Marine Environments: Exploring the Role of Iron-Oxidizing Bacteria , 2016, Front. Microbiol..

[8]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[9]  A. Mumford,et al.  Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge , 2016, Front. Microbiol..

[10]  T. Hori,et al.  Ecophysiology of Zetaproteobacteria Associated with Shallow Hydrothermal Iron-Oxyhydroxide Deposits in Nagahama Bay of Satsuma Iwo-Jima, Japan , 2016, Front. Microbiol..

[11]  Jörg Peplies,et al.  JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison , 2015, Bioinform..

[12]  M. Hattori,et al.  Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria , 2015, Front. Microbiol..

[13]  C. Jackson,et al.  Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival , 2015, The ISME Journal.

[14]  William J. Jenkins,et al.  Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean , 2015, Nature.

[15]  B. Orcutt,et al.  New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph , 2015, Applied and Environmental Microbiology.

[16]  G. Luther,et al.  Microbial Iron Mats at the Mid-Atlantic Ridge and Evidence that Zetaproteobacteria May Be Restricted to Iron-Oxidizing Marine Systems , 2015, PloS one.

[17]  R. Stepanauskas,et al.  Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount , 2014, The ISME Journal.

[18]  M. Hansen,et al.  A novel hydrogen oxidizer amidst the sulfur-oxidizing Thiomicrospira lineage , 2014, The ISME Journal.

[19]  I-Min A. Chen,et al.  IMG 4 version of the integrated microbial genomes comparative analysis system , 2013, Nucleic Acids Res..

[20]  K. Williams,et al.  Proposal for a new class within the phylum Proteobacteria, Acidithiobacillia classis nov., with the type order Acidithiobacillales, and emended description of the class Gammaproteobacteria. , 2013, International journal of systematic and evolutionary microbiology.

[21]  Lynne A. Goodwin,et al.  Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics , 2013, Front. Microbiol..

[22]  D. Gomez-Ibanez,et al.  A precision multi-sampler for deep-sea hydrothermal microbial mat studies , 2012 .

[23]  Kentaro Nakamura,et al.  Iron-Based Microbial Ecosystem on and Below the Seafloor: A Case Study of Hydrothermal Fields of the Southern Mariana Trough , 2012, Front. Microbio..

[24]  J. G. Kuenen,et al.  Mariprofundus ferrooxydans PV-1 the First Genome of a Marine Fe(II) Oxidizing Zetaproteobacterium , 2011, PloS one.

[25]  P. Girguis,et al.  Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids , 2011 .

[26]  B. Tebo,et al.  Biodiversity and Emerging Biogeography of the Neutrophilic Iron-Oxidizing Zetaproteobacteria , 2011, Applied and Environmental Microbiology.

[27]  Katrina J. Edwards,et al.  Microbial Ecology of the Dark Ocean above, at, and below the Seafloor , 2011, Microbiology and Molecular Reviews.

[28]  I. Berg Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways , 2011, Applied and Environmental Microbiology.

[29]  David Emerson,et al.  Iron-oxidizing bacteria: an environmental and genomic perspective. , 2010, Annual review of microbiology.

[30]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[31]  Hiroyuki Kimura,et al.  Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough. , 2009, Environmental microbiology.

[32]  R. Rosselló-Móra,et al.  Shifting the genomic gold standard for the prokaryotic species definition , 2009, Proceedings of the National Academy of Sciences.

[33]  I-Min A. Chen,et al.  IMG ER: a system for microbial genome annotation expert review and curation , 2009, Bioinform..

[34]  C. Moyer,et al.  Extreme spatial and temporal variability of hydrothermal microbial mat communities along the Mariana Island Arc and southern Mariana back‐arc system , 2008 .

[35]  J. Imlay Cellular defenses against superoxide and hydrogen peroxide. , 2008, Annual review of biochemistry.

[36]  T. Lilburn,et al.  A Novel Lineage of Proteobacteria Involved in Formation of Marine Fe-Oxidizing Microbial Mat Communities , 2007, PloS one.

[37]  F. Tabita,et al.  Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. , 2007, Journal of experimental botany.

[38]  A. Moya,et al.  Determination of the Core of a Minimal Bacterial Gene Set , 2004, Microbiology and Molecular Biology Reviews.

[39]  Howard Ochman,et al.  Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. , 2004, Environmental microbiology.

[40]  K. Goto,et al.  Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). , 1974, Talanta.

[41]  L. Bongers Energy Generation and Utilization in Hydrogen Bacteria , 1970, Journal of bacteriology.

[42]  B. Glazer,et al.  Bringing microbial diversity into focus: high‐resolution analysis of iron mats from the Lō‘ihi Seamount , 2017, Environmental microbiology.

[43]  Kevin W. Hager Bacterial Diversity and Community Structure of Lithotrophically-Driven Microbial Mats from the Mariana Arc and Back-Arc , 2016 .

[44]  D. Richardson,et al.  Mechanisms of Bacterial Extracellular Electron Exchange. , 2016, Advances in microbial physiology.

[45]  D. Emerson,et al.  Enrichment and isolation of iron-oxidizing bacteria at neutral pH. , 2005, Methods in enzymology.

[46]  J. G. Morris,et al.  Superoxide dismutase in some obligately anaerobic bacteria , 1975, FEBS letters.