What’s the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid

We design a sublinear Fourier sampling algorithm for a case of sparse off-grid frequency recovery. These are signals with the form $$f(t) = \sum _{j=1}^k a_j \mathrm{e}^{i\omega _j t} + \int \nu (\omega )\mathrm{e}^{i\omega t}d\mu (\omega )$$f(t)=∑j=1kajeiωjt+∫ν(ω)eiωtdμ(ω); i.e., exponential polynomials with a noise term. The frequencies $$\{\omega _j\}$${ωj} satisfy $$\omega _j\in [\eta ,2\pi -\eta ]$$ωj∈[η,2π-η] and $$\min _{i\ne j} |\omega _i-\omega _j|\ge \eta $$mini≠j|ωi-ωj|≥η for some $$\eta > 0$$η>0. We design a sublinear time randomized algorithm which, for any $$\epsilon \in (0,\eta /k]$$ϵ∈(0,η/k], which takes $$O(k\log k\log (1/\epsilon )(\log k+\log (\Vert a\Vert _1/\Vert \nu \Vert _1))$$O(klogklog(1/ϵ)(logk+log(‖a‖1/‖ν‖1)) samples of $$f(t)$$f(t) and runs in time proportional to number of samples, recovering $$\omega _j'\approx \omega _j$$ωj′≈ωj and $$a_j'\approx a_j$$aj′≈aj such that, with probability $$\varOmega (1)$$Ω(1), the approximation error satisfies $$|\omega _j'-\omega _j|\le \epsilon $$|ωj′-ωj|≤ϵ and $$|a_j-a_j'|\le \Vert \nu \Vert _1/k$$|aj-aj′|≤‖ν‖1/k for all $$j$$j with $$|a_j|\ge \Vert \nu \Vert _1/k$$|aj|≥‖ν‖1/k. We apply our model and algorithm to bearing estimation or source localization and discuss their implications for receiver array processing.

[1]  A. Zygmund,et al.  Measure and integral : an introduction to real analysis , 1977 .

[2]  V. Rich Personal communication , 1989, Nature.

[3]  Tapan K. Sarkar,et al.  On SVD for estimating generalized eigenvalues of singular matrix pencil in noise , 1991, IEEE Trans. Signal Process..

[4]  Eyal Kushilevitz,et al.  Learning decision trees using the Fourier spectrum , 1991, STOC '91.

[5]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[6]  Sudipto Guha,et al.  Near-optimal sparse fourier representations via sampling , 2002, STOC '02.

[7]  Vladimir I. Clue Harmonic analysis , 2004, 2004 IEEE Electro/Information Technology Conference.

[8]  Anna C. Gilbert,et al.  Improved time bounds for near-optimal sparse Fourier representations , 2005, SPIE Optics + Photonics.

[9]  Piotr Indyk,et al.  Sparse Recovery Using Sparse Matrices , 2010, Proceedings of the IEEE.

[10]  Volkan Cevher,et al.  Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective , 2010, Proceedings of the IEEE.

[11]  Daniel Potts,et al.  Parameter estimation for exponential sums by approximate Prony method , 2010, Signal Process..

[12]  Yide Wang,et al.  Interpolation-based matrix pencil method for parameter estimation of dispersive media in civil engineering , 2010, Signal Process..

[13]  Mark A. Iwen,et al.  Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..

[14]  Michael B. Wakin,et al.  Compressive Sensing of Analog Signals Using Discrete Prolate Spheroidal Sequences , 2011, ArXiv.

[15]  Eero P. Simoncelli,et al.  Sparse decomposition of transformation-invariant signals with continuous basis pursuit , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Daniel Potts,et al.  Nonlinear Approximation by Sums of Exponentials and Translates , 2011, SIAM J. Sci. Comput..

[17]  Piotr Indyk,et al.  Nearly optimal sparse fourier transform , 2012, STOC '12.

[18]  Ely Porat,et al.  Approximate Sparse Recovery: Optimizing Time and Measurements , 2012, SIAM J. Comput..

[19]  Piotr Indyk,et al.  Simple and practical algorithm for sparse Fourier transform , 2012, SODA.

[20]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[21]  Stefan Kunis,et al.  A sparse Prony FFT , 2013 .