What’s the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid
暂无分享,去创建一个
Volkan Cevher | Petros Boufounos | Anna C. Gilbert | Martin Strauss | Yi Li | A. Gilbert | V. Cevher | M. Strauss | P. Boufounos | Yi Li
[1] A. Zygmund,et al. Measure and integral : an introduction to real analysis , 1977 .
[2] V. Rich. Personal communication , 1989, Nature.
[3] Tapan K. Sarkar,et al. On SVD for estimating generalized eigenvalues of singular matrix pencil in noise , 1991, IEEE Trans. Signal Process..
[4] Eyal Kushilevitz,et al. Learning decision trees using the Fourier spectrum , 1991, STOC '91.
[5] Thierry Blu,et al. Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..
[6] Sudipto Guha,et al. Near-optimal sparse fourier representations via sampling , 2002, STOC '02.
[7] Vladimir I. Clue. Harmonic analysis , 2004, 2004 IEEE Electro/Information Technology Conference.
[8] Anna C. Gilbert,et al. Improved time bounds for near-optimal sparse Fourier representations , 2005, SPIE Optics + Photonics.
[9] Piotr Indyk,et al. Sparse Recovery Using Sparse Matrices , 2010, Proceedings of the IEEE.
[10] Volkan Cevher,et al. Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective , 2010, Proceedings of the IEEE.
[11] Daniel Potts,et al. Parameter estimation for exponential sums by approximate Prony method , 2010, Signal Process..
[12] Yide Wang,et al. Interpolation-based matrix pencil method for parameter estimation of dispersive media in civil engineering , 2010, Signal Process..
[13] Mark A. Iwen,et al. Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..
[14] Michael B. Wakin,et al. Compressive Sensing of Analog Signals Using Discrete Prolate Spheroidal Sequences , 2011, ArXiv.
[15] Eero P. Simoncelli,et al. Sparse decomposition of transformation-invariant signals with continuous basis pursuit , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[16] Daniel Potts,et al. Nonlinear Approximation by Sums of Exponentials and Translates , 2011, SIAM J. Sci. Comput..
[17] Piotr Indyk,et al. Nearly optimal sparse fourier transform , 2012, STOC '12.
[18] Ely Porat,et al. Approximate Sparse Recovery: Optimizing Time and Measurements , 2012, SIAM J. Comput..
[19] Piotr Indyk,et al. Simple and practical algorithm for sparse Fourier transform , 2012, SODA.
[20] Marco F. Duarte,et al. Spectral compressive sensing , 2013 .
[21] Stefan Kunis,et al. A sparse Prony FFT , 2013 .