Playing with Duality

[1]  P. L. Combettes,et al.  Variable metric forward–backward splitting with applications to monotone inclusions in duality , 2012, 1206.6791.

[2]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[3]  Caroline Chaux,et al.  A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal , 2014, IEEE Transactions on Signal Processing.

[4]  Vladimir Kolmogorov,et al.  Generalized roof duality and bisubmodular functions , 2010, Discret. Appl. Math..

[5]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[6]  Émilie Chouzenoux,et al.  A Majorize-Minimize Memory Gradient method for complex-valued inverse problems , 2014, Signal Process..

[7]  Nassir Navab,et al.  Optical flow estimation with uncertainties through dynamic MRFs , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[9]  R. Boţ,et al.  Conjugate Duality in Convex Optimization , 2010 .

[10]  Nikos Komodakis,et al.  Markov Random Field modeling, inference & learning in computer vision & image understanding: A survey , 2013, Comput. Vis. Image Underst..

[11]  Angelia Nedic,et al.  Subgradient Methods for Saddle-Point Problems , 2009, J. Optimization Theory and Applications.

[12]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[13]  Gabriele Steidl,et al.  Epigraphical Projection for Solving Least Squares Anscombe Transformed Constrained Optimization Problems , 2013, SSVM.

[14]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[15]  Marc Teboulle,et al.  A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..

[16]  Patrick L. Combettes,et al.  A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality , 2010, SIAM J. Optim..

[17]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[18]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[19]  R. Chan,et al.  Minimization and parameter estimation for seminorm regularization models with I-divergence constraints , 2013 .

[20]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[21]  Hugues Talbot,et al.  A primal-dual proximal splitting approach for restoring data corrupted with poisson-gaussian noise , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[22]  Nelly Pustelnik,et al.  Parallel Proximal Algorithm for Image Restoration Using Hybrid Regularization , 2009, IEEE Transactions on Image Processing.

[23]  Gabriel Peyré,et al.  Optimal Transport with Proximal Splitting , 2013, SIAM J. Imaging Sci..

[24]  Antonin Chambolle,et al.  Diagonal preconditioning for first order primal-dual algorithms in convex optimization , 2011, 2011 International Conference on Computer Vision.

[25]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[26]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[27]  Thomas Schoenemann,et al.  Parallel and distributed vision algorithms using dual decomposition , 2011, Comput. Vis. Image Underst..

[28]  Christoph Schnörr,et al.  Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing , 2012, UAI.

[29]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[30]  Xiaoming Yuan,et al.  Adaptive Primal-Dual Hybrid Gradient Methods for Saddle-Point Problems , 2013, 1305.0546.

[31]  Vladimir Kolmogorov,et al.  New algorithms for convex cost tension problem with application to computer vision , 2009, Discret. Optim..

[32]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[33]  Joseph Naor,et al.  Approximation algorithms for the metric labeling problem via a new linear programming formulation , 2001, SODA '01.

[34]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[35]  Vladimir Kolmogorov,et al.  A global perspective on MAP inference for low-level vision , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[36]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[37]  Patrick L. Combettes,et al.  Solving Coupled Composite Monotone Inclusions by Successive Fejér Approximations of their Kuhn-Tucker Set , 2013, SIAM J. Optim..

[38]  Nikos Komodakis,et al.  Beyond Loose LP-Relaxations: Optimizing MRFs by Repairing Cycles , 2008, ECCV.

[39]  Subhashis Banerjee,et al.  Generic Cuts: An Efficient Algorithm for Optimal Inference in Higher Order MRF-MAP , 2012, ECCV.

[40]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[41]  V. Cevher,et al.  A Primal-Dual Algorithmic Framework for Constrained Convex Minimization , 2014, 1406.5403.

[42]  Christoph Schnörr,et al.  A study of Nesterov's scheme for Lagrangian decomposition and MAP labeling , 2011, CVPR 2011.

[43]  Tomás Werner,et al.  A Linear Programming Approach to Max-Sum Problem: A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Ömer Deniz Akyildiz,et al.  Primal-dual algorithms for audio decomposition using mixed norms , 2013, Signal, Image and Video Processing.

[45]  Radu Ioan Bot,et al.  Convergence Analysis for a Primal-Dual Monotone + Skew Splitting Algorithm with Applications to Total Variation Minimization , 2012, Journal of Mathematical Imaging and Vision.

[46]  Gabriele Steidl,et al.  First order algorithms in variational image processing , 2014, ArXiv.

[47]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[48]  Vladimir Kolmogorov,et al.  Submodular decomposition framework for inference in associative Markov networks with global constraints , 2011, CVPR 2011.

[49]  Nikos Komodakis,et al.  MRF Optimization via Dual Decomposition: Message-Passing Revisited , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[50]  Nikos Paragios,et al.  Intrinsic dense 3D surface tracking , 2011, CVPR 2011.

[51]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[53]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[54]  Mário A. T. Figueiredo,et al.  Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[55]  Daphne Koller,et al.  Efficiently selecting regions for scene understanding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[56]  Nic Schraudolph,et al.  Polynomial-Time Exact Inference in NP-Hard Binary MRFs via Reweighted Perfect Matching , 2010, AISTATS.

[57]  Nassir Navab,et al.  Dense image registration through MRFs and efficient linear programming , 2008, Medical Image Anal..

[58]  P. L. Combettes,et al.  Dualization of Signal Recovery Problems , 2009, 0907.0436.

[59]  Tamir Hazan,et al.  Norm-Product Belief Propagation: Primal-Dual Message-Passing for Approximate Inference , 2009, IEEE Transactions on Information Theory.

[60]  P. L. Combettes,et al.  A proximal decomposition method for solving convex variational inverse problems , 2008, 0807.2617.

[61]  Bo Liu,et al.  Proximal Reinforcement Learning: A New Theory of Sequential Decision Making in Primal-Dual Spaces , 2014, ArXiv.

[62]  Chen Wang,et al.  A Primal-Dual Algorithm for Higher-Order Multilabel Markov Random Fields , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[63]  Suvrit Sra,et al.  Reflection methods for user-friendly submodular optimization , 2013, NIPS.

[64]  Amel Benazza-Benyahia,et al.  A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging , 2011, Medical Image Anal..

[65]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[66]  Radu Ioan Bot,et al.  A Douglas-Rachford Type Primal-Dual Method for Solving Inclusions with Mixtures of Composite and Parallel-Sum Type Monotone Operators , 2012, SIAM J. Optim..

[67]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[68]  Nikos Komodakis,et al.  MRF-Based Blind Image Deconvolution , 2012, ACCV.

[69]  J. Pesquet,et al.  A Parallel Inertial Proximal Optimization Method , 2012 .

[70]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[71]  Valérie R. Wajs,et al.  A variational formulation for frame-based inverse problems , 2007 .

[72]  Guido Moerkotte,et al.  Proximal operator of quotient functions with application to a feasibility problem in query optimization , 2015, J. Comput. Appl. Math..

[73]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[74]  Tommi S. Jaakkola,et al.  Tightening LP Relaxations for MAP using Message Passing , 2008, UAI.

[75]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[76]  Sebastian Nowozin,et al.  A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[77]  Yair Weiss,et al.  Linear Programming Relaxations and Belief Propagation - An Empirical Study , 2006, J. Mach. Learn. Res..

[78]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[79]  Camille Couprie,et al.  Dual constrained TV-based regularization , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[80]  Damek Davis,et al.  Convergence Rate Analysis of the Forward-Douglas-Rachford Splitting Scheme , 2014, SIAM J. Optim..

[81]  Nikos Komodakis,et al.  MRF Energy Minimization and Beyond via Dual Decomposition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[82]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[83]  Marc Pollefeys,et al.  Joint 3D Scene Reconstruction and Class Segmentation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[84]  Mohamed-Jalal Fadili,et al.  Convergence rates with inexact non-expansive operators , 2014, Mathematical Programming.

[85]  Tommi S. Jaakkola,et al.  Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations , 2007, NIPS.

[86]  Julian Yarkony,et al.  Tightening MRF Relaxations with Planar Subproblems , 2011, UAI.

[87]  Patrick L. Combettes,et al.  A forward-backward view of some primal-dual optimization methods in image recovery , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[88]  Patrick L. Combettes,et al.  Systems of Structured Monotone Inclusions: Duality, Algorithms, and Applications , 2012, SIAM J. Optim..

[89]  Gregory Shakhnarovich,et al.  Diverse M-Best Solutions in Markov Random Fields , 2012, ECCV.

[90]  Nikos Komodakis,et al.  Beyond pairwise energies: Efficient optimization for higher-order MRFs , 2009, CVPR.

[91]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[92]  Daniel Cremers,et al.  A Convex Formulation of Continuous Multi-label Problems , 2008, ECCV.

[93]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[94]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[95]  Shunsuke Ono,et al.  A sparse system identification by using adaptively-weighted total variation via a primal-dual splitting approach , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[96]  Bang Công Vu,et al.  A splitting algorithm for dual monotone inclusions involving cocoercive operators , 2011, Advances in Computational Mathematics.

[97]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[98]  Pushmeet Kohli,et al.  Markov Random Fields for Vision and Image Processing , 2011 .

[99]  Atsushi Nakazawa,et al.  Motion Coherent Tracking Using Multi-label MRF Optimization , 2012, International Journal of Computer Vision.

[100]  Ali H. Sayed,et al.  Stability and Performance Limits of Adaptive Primal-Dual Networks , 2014, IEEE Transactions on Signal Processing.

[101]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[102]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[103]  Vladimir Kolmogorov,et al.  Joint optimization of segmentation and appearance models , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[104]  Patrick L. Combettes,et al.  An Algorithm for Splitting Parallel Sums of Linearly Composed Monotone Operators, with Applications to Signal Recovery , 2013, 1305.5828.

[105]  Nelly Pustelnik,et al.  Empirical Mode Decomposition revisited by multicomponent non smooth convex optimization 1 , 2014 .

[106]  Nikos Komodakis,et al.  Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal-dual strategies , 2008, Comput. Vis. Image Underst..

[107]  Julien Mairal,et al.  Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..

[108]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[109]  Vladimir Kolmogorov,et al.  A Dual Decomposition Approach to Feature Correspondence , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[110]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[111]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[112]  I. Loris,et al.  On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty , 2011, 1104.1087.

[113]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[114]  Émilie Chouzenoux,et al.  A penalized weighted least squares approach for restoring data corrupted with signal-dependent noise , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[115]  Fredrik Kahl,et al.  Generalized roof duality , 2012, Discret. Appl. Math..

[116]  Valeria Ruggiero,et al.  On the Convergence of Primal–Dual Hybrid Gradient Algorithms for Total Variation Image Restoration , 2012, Journal of Mathematical Imaging and Vision.

[117]  Daniel Cremers,et al.  A convex relaxation approach for computing minimal partitions , 2009, CVPR.

[118]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[119]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[120]  Nikos Komodakis,et al.  Approximate Labeling via Graph Cuts Based on Linear Programming , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[121]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[122]  Ben Glocker,et al.  Deformable medical image registration: setting the state of the art with discrete methods. , 2011, Annual review of biomedical engineering.

[123]  Xiaoqun Zhang,et al.  A primal–dual fixed point algorithm for convex separable minimization with applications to image restoration , 2013 .

[124]  J. Giovannelli,et al.  Positive deconvolution for superimposed extended source and point sources , 2005, astro-ph/0507691.