Impact of titanium precursors on formation and electrochemical properties of Li4Ti5O12 anode materials for lithium-ion batteries

[1]  T. B. Magdaline,et al.  Microwave-assisted hydrometallurgical extraction of Li4Ti5O12 and LiFePO4 from ilmenite: effect of PPy-Br2 derived C-coating with N, Br, and Nb5+ Co-doping on electrodes for high-rate energy storage performance , 2020 .

[2]  T. Bonnisa Magdaline,et al.  Microwave-assisted hydrometallurgical extraction of Li4Ti5O12 and LiFePO4 from ilmenite: effect of PPy-Br2 derived C-coating with N, Br, and Nb5+ Co-doping on electrodes for high-rate energy storage performance. , 2020, Dalton transactions.

[3]  Soojin Park,et al.  Single-step solid-state synthesis and characterization of Li4Ti5−xFexO12−y (0 ≤ x ≤ 0.1) as an anode for lithium-ion batteries , 2020 .

[4]  Zhongqiang Shan,et al.  Understanding the formation of ultrathin mesoporous Li4Ti5O12 nanosheets and their application in high-rate, long-life lithium-ion anodes. , 2019, Nanoscale.

[5]  B. Babu,et al.  Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries , 2018, Results in Physics.

[6]  N. Cao,et al.  Hierarchical Li4Ti5O12/C composite for lithium-ion batteries with enhanced rate performance , 2017 .

[7]  Yong Guo,et al.  High Rate Capability of Lithium Chromium Titanium Oxide Hierarchical Mesoporous Microspheres Anode Materials Synthesized by a One-Pot Co-Precipitation for Lithium Ion Batteries , 2016 .

[8]  G. Yushin,et al.  Revealing Rate Limitations in Nanocrystalline Li4Ti5O12 Anodes for High‐Power Lithium Ion Batteries , 2016 .

[9]  Jong Sung Lim,et al.  Synthesis of lithium titanium oxide (Li4Ti5O12) with ultrathin carbon layer using supercritical fluids for anode materials in lithium batteries , 2016, Journal of Materials Science.

[10]  Ali Ghorbani Kashkooli,et al.  Nano-particle size effect on the performance of Li4Ti5O12 spinel , 2016 .

[11]  Y. Chen-Yang,et al.  Sol–gel synthesis of low carbon content and low surface area Li4Ti5O12/carbon black composites as high-rate anode materials for lithium ion batteries , 2015 .

[12]  M. Guler,et al.  Novel Ag/Li4Ti5O12 binary composite anode electrodes for high capacity Li-ion batteries , 2015 .

[13]  E. Pohjalainen,et al.  Effect of Li4Ti5O12 Particle Size on the Performance of Lithium Ion Battery Electrodes at High C-Rates and Low Temperatures , 2015 .

[14]  Baofeng Wang,et al.  Facile solution-based synthesis of spinel Li4Ti5O12 nanosheets and the application in lithium ion Batteries , 2014 .

[15]  M. Michalska,et al.  Influence of milling time in solid-state synthesis on structure, morphology and electrochemical properties of Li4Ti5O12 of spinel structure , 2014 .

[16]  Y. Kuo,et al.  One-pot sol-gel synthesis of Li4Ti5O12/C anode materials for high-performance Li-ion batteries , 2014 .

[17]  Xing Li,et al.  AlF3 modification to suppress the gas generation of Li4Ti5O12 anode battery , 2014 .

[18]  Zhi Qiao,et al.  Anatase-TiO2 nanocoating of Li4Ti5O12 nanorod anode for lithium-ion batteries , 2014 .

[19]  Jinbao Zhao,et al.  Fast solution-combustion synthesis of nitrogen-modified Li4Ti5O12 nanomaterials with improved electrochemical performance. , 2014, ACS applied materials & interfaces.

[20]  Yao-Hui Zhang,et al.  The influence of the TiO2 particle size on the properties of Li4Ti5O12 anode material for lithium-ion battery , 2014 .

[21]  Li Lu,et al.  Advanced electrochemical performance of Li4Ti5O12-based materials for lithium-ion battery: Synergistic effect of doping and compositing , 2014 .

[22]  Hongsen Li,et al.  Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries , 2013 .

[23]  Yongyao Xia,et al.  Li4Ti5O12 prepared by a modified citric acid sol–gel method for lithium-ion battery , 2013 .

[24]  G. Cui,et al.  Electrostatic assembly of mesoporous Li4Ti5O12/graphene hybrid as high-rate anode materials , 2013 .

[25]  Yan‐Bing He,et al.  Effects of TiO2 crystal structure on the performance of Li4Ti5O12 anode material , 2012 .

[26]  Feixiang Wu,et al.  Preparation of TiO2 nanosheets and Li4Ti5O12 anode material from natural ilmenite , 2011 .

[27]  Rongshun Wang,et al.  High rate capability and long-term cyclability of Li4Ti4.9V0.1O12 as anode material in lithium ion battery , 2011 .

[28]  J. Duh,et al.  Preparation and characterization of Ruthenium doped Li4Ti5O12 anode material for the enhancement of rate capability and cyclic stability , 2011 .

[29]  M. Hirayama,et al.  Epitaxial growth and electrochemical properties of Li4Ti5O12 thin-film lithium battery anodes. , 2011, Dalton transactions.

[30]  Hui Yang,et al.  Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol-gel method , 2011 .

[31]  Jörg Friedrichs,et al.  Global energy crunch: How different parts of the world would react to a peak oil scenario , 2010 .

[32]  Timothy A. Mitchell,et al.  THE RESOURCES OF ECONOMICS , 2010 .

[33]  Hongda Du,et al.  Structure and Electrochemical Properties of Zn-Doped Li4Ti5O12 as Anode Materials in Li-Ion Battery , 2010 .

[34]  Zaiping Guo,et al.  Preparation and characterization of novel spinel Li4Ti5O12−xBrx anode materials , 2009 .

[35]  Peter Hall,et al.  Energy-storage technologies and electricity generation , 2008 .

[36]  A. Jansen,et al.  Studies of Mg-Substituted Li4-xMgxTi5O12 Spinel Electrodes (0 ≤ x ≤ 1) for Lithium Batteries. , 2001 .

[37]  A. Yua,et al.  Nano-particle size effect on the performance of Li 4 Ti 5 O 12 spinel , 2016 .

[38]  B. Xia,et al.  Isothermal kinetic analysis of the effects of high-energy ball milling on solid-state reaction of Li4Ti5O12 , 2016 .

[39]  Xiang Li,et al.  Graphene oxide/lithium titanate composite with binder-free as high capacity anode material for lithium-ion batteries , 2015 .

[40]  A. Jansen,et al.  Studies of Mg-substituted Li{sub 4x4}Mg{sub x}Ti{sub 5}O{sub 12} spinel electrodes (0{le}x{le}1) for lithium batteries. , 2001 .