ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks

Transcription factors (TFs) play an important role in gene regulation. The interconnections among TFs, chromatin interactions, epigenetic marks and cis-regulatory elements form a complex gene transcription apparatus. Our previous work, ChIP-Array, combined TF binding and transcriptome data to construct gene regulatory networks (GRNs). Here we present an enhanced version, ChIP-Array 2, to integrate additional types of omics data including long-range chromatin interaction, open chromatin region and histone modification data to dissect more comprehensive GRNs involving diverse regulatory components. Moreover, we substantially extended our motif database for human, mouse, rat, fruit fly, worm, yeast and Arabidopsis, and curated large amount of omics data for users to select as input or backend support. With ChIP-Array 2, we compiled a library containing regulatory networks of 18 TFs/chromatin modifiers in mouse embryonic stem cell (mESC). The web server and the mESC library are publicly free and accessible athttp://jjwanglab.org/chip-array.

[1]  P. Laird,et al.  Discovery of multi-dimensional modules by integrative analysis of cancer genomic data , 2012, Nucleic acids research.

[2]  A. Dean On a chromosome far, far away: LCRs and gene expression. , 2006, Trends in genetics : TIG.

[3]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[4]  Hongkai Ji,et al.  ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking , 2013, BMC Bioinformatics.

[5]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[6]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[7]  Sündüz Keles,et al.  Detecting differential binding of transcription factors with ChIP-seq , 2012, Bioinform..

[8]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[9]  Gary D. Bader,et al.  Cytoscape Web: an interactive web-based network browser , 2010, Bioinform..

[10]  Fan Wang,et al.  CisGenome Browser: a flexible tool for genomic data visualization , 2010, Bioinform..

[11]  Michael G. Poirier,et al.  Nucleosomes accelerate transcription factor dissociation , 2013, Nucleic acids research.

[12]  Bertrand Guillotin,et al.  Three LIF-dependent signatures and gene clusters with atypical expression profiles, identified by transcriptome studies in mouse ES cells and early derivatives , 2009, BMC Genomics.

[13]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[14]  Rory Stark Differential Oestrogen Receptor Binding is Associated with Clinical Outcome in Breast Cancer , 2012, RECOMB.

[15]  Herbert Schulz,et al.  A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. , 2009, Cell stem cell.

[16]  Michael Q. Zhang,et al.  ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor , 2011, Nucleic Acids Res..

[17]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[18]  Shi-Hua Zhang,et al.  Identifying multi-layer gene regulatory modules from multi-dimensional genomic data , 2012, Bioinform..

[19]  Jie Zhou,et al.  Discovering transcription factor regulatory targets using gene expression and binding data , 2012, Bioinform..

[20]  Inna Dubchak,et al.  VISTA Enhancer Browser—a database of tissue-specific human enhancers , 2006, Nucleic Acids Res..

[21]  Maureen A. Sartor,et al.  PePr: a peak-calling prioritization pipeline to identify consistent or differential peaks from replicated ChIP-Seq data , 2014, Bioinform..

[22]  Gary D. Stormo,et al.  DNA binding sites: representation and discovery , 2000, Bioinform..

[23]  L. Stein,et al.  JBrowse: a next-generation genome browser. , 2009, Genome research.

[24]  X. Chen,et al.  The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells , 2006, Nature Genetics.

[25]  Michael Q. Zhang,et al.  EpiRegNet: Constructing epigenetic regulatory network from high throughput gene expression data for humans , 2011, Epigenetics.

[26]  I. Ellis,et al.  Differential oestrogen receptor binding is associated with clinical outcome in breast cancer , 2011, Nature.

[27]  Jacques Côté,et al.  Perceiving the epigenetic landscape through histone readers , 2012, Nature Structural &Molecular Biology.

[28]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[29]  Hanfei Sun,et al.  Target analysis by integration of transcriptome and ChIP-seq data with BETA , 2013, Nature Protocols.

[30]  Rainer Breitling,et al.  Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments , 2004, FEBS letters.

[31]  Megan F. Cole,et al.  Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells , 2008, Cell.

[32]  Junwen Wang,et al.  Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. , 2014, Methods.

[33]  Bin Yan,et al.  PTHGRN: unraveling post-translational hierarchical gene regulatory networks using PPI, ChIP-seq and gene expression data , 2014, Nucleic Acids Res..

[34]  Alexei A. Sharov,et al.  Systematic repression of transcription factors reveals limited patterns of gene expression changes in ES cells , 2013, Scientific Reports.

[35]  Sridhar Hannenhalli,et al.  Transcriptional Genomics Associates FOX Transcription Factors With Human Heart Failure , 2006, Circulation.

[36]  Wiebe Kruijer,et al.  Octamer-dependent regulation of the kFGF gene in embryonal carcinoma and embryonic stem cells , 1991, Mechanisms of Development.

[37]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  B. L,et al.  The accessible chromatin landscape of the human genome , 2016 .