Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes

We report on the transport properties of lithium ion conducting glass ceramics represented by the general composition Li1+x–yAlx3+My5+M2–x–y4+(PO4)3 with NASICON-type structure and their stability in contact with lithium metal. In particular, solid electrolyte phases with M = Ge, M = Ti, Ge, and M = Ti, Ta were investigated. AC impedance spectroscopy and DC polarization measurements were applied to determine the conductivity as a function of temperature, and to extract the partial electronic conductivity. The maximum total conductivity at room temperature was found to be about 4 × 10–4 S/cm for the solely Ge containing sample. We demonstrate that the combination of vacuum-based lithium thin film deposition and X-ray photoelectron spectroscopy (XPS) is well suited to study the reactivity of the solid electrolyte membranes in contact with lithium. As a major result, we show that none of the materials investigated is stable in contact with lithium metal, and we discuss the reactive interaction between solid ...

[1]  M. H. Hebb Electrical Conductivity of Silver Sulfide , 1952 .

[2]  C. Wagner Investigations on Silver Sulfide , 1953 .

[3]  J. E. Bauerle Study of solid electrolyte polarization by a complex admittance method , 1969 .

[4]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[5]  K. M. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[6]  J. A. Taylor,et al.  Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis , 1981 .

[7]  J. H. Thomas,et al.  A Photoelectron Spectroscopy Study of CF 4 / H 2 Reactive Ion Etching Residue on Tantalum Disilicide , 1989 .

[8]  John T. S. Irvine,et al.  Electroceramics: Characterization by Impedance Spectroscopy , 1990 .

[9]  Y. Sadaoka,et al.  Electrical Properties and Sinterability for Lithium Germanium Phosphate Li1+xMxGe2-x(PO4)3, M=Al, Cr, Ga, Fe, Sc, and In Systems. , 1992 .

[10]  J. Janek,et al.  Determination of local potentials in mixed conductors — two examples , 1995 .

[11]  G. Adachi,et al.  Fast Li⊕ Conducting Ceramic Electrolytes , 1996 .

[12]  I. Riess Review of the limitation of the Hebb-Wagner polarization method for measuring partial conductivities in mixed ionic electronic conductors , 1996 .

[13]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[14]  J. Fu Fast Li+ ion conduction in Li2O–(Al2O3 Ga22O3)–TiO2–P2O5 glass–ceramics , 1998 .

[15]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[16]  G. Rao,et al.  Fast ion conduction in the Li-analogues of Nasicon, Li1 + x[(Ta1 −xGex)Al](PO4)3 , 2002 .

[17]  Z. Hussain,et al.  High resolution XPS study of oxide layers grown on Ge substrates , 2003 .

[18]  Joachim Maier,et al.  Defect chemistry and ion transport in nanostructured materials: Part II. Aspects of nanoionics , 2003 .

[19]  Venkataraman Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[20]  Hongyu Wang,et al.  Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries , 2004 .

[21]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[22]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[23]  Rainer Waser,et al.  Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria , 2006 .

[24]  Jou-Hyeon Ahn,et al.  Room-temperature solid-state sodium/sulfur battery , 2006 .

[25]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[26]  Z. Wen,et al.  Lithium Ion‐Conducting Glass–Ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x=0.0–0.20) with Good Electrical and Electrochemical Properties , 2007 .

[27]  J. Moulder,et al.  C60 sputtering of organics: A study using TOF-SIMS, XPS and nanoindentation , 2008 .

[28]  N. Gupta,et al.  Superionic Conductivity in a Lithium Aluminum Germanium Phosphate Glass–Ceramic , 2008 .

[29]  Binod Kumar,et al.  Space-Charge-Mediated Superionic Transport in Lithium Ion Conducting Glass–Ceramics , 2009 .

[30]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[31]  Bruno Scrosati,et al.  A high-performance polymer tin sulfur lithium ion battery. , 2010, Angewandte Chemie.

[32]  F. Rosciano,et al.  Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics , 2011 .

[33]  N. Sammes,et al.  A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions , 2011 .

[34]  Alexander Kuhn,et al.  Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.

[35]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[36]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[37]  Hung-Chun Wu,et al.  Effect of C60 ion sputtering on the compositional depth profiling in XPS for Li(Ni,Co,Mn)O2 electrodes , 2011 .

[38]  M. Vithal,et al.  A wide-ranging review on Nasicon type materials , 2011 .

[39]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[40]  K. Pinkwart,et al.  Lithium–sulphur batteries – binder free carbon nanotubes electrode examined with various electrolytes , 2012 .

[41]  Jürgen Janek,et al.  Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure , 2012 .

[42]  C. Cantau,et al.  Elaboration and Characterization of a Free Standing LiSICON Membrane for Aqueous Lithium-Air Battery , 2012 .

[43]  Shyue Ping Ong,et al.  First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material , 2012 .

[44]  Sebastian Wenzel,et al.  Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte , 2013 .

[45]  Philipp Adelhelm,et al.  A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. , 2013, Physical chemistry chemical physics : PCCP.

[46]  Takeshi Kobayashi,et al.  All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte , 2013 .