QoS-aware optimization of sensor network queries

The resource-constrained nature of mote-level wireless sensor networks (WSNs) poses challenges for the design of a general-purpose sensor network query processors (SNQPs). Existing SNQPs tend to generate query execution plans (QEPs) that are selected on the basis of a fixed, implicit expectation, for example, that energy consumption should be kept as small as possible. However, in WSN applications, the same query may be subject to several, possibly conflicting, quality-of-service (QoS) expectations concomitantly (for example maximizing data acquisition rates subject to keeping energy consumption low). It is also not uncommon for the QoS expectations to change over the lifetime of a deployment (for example from low to high data acquisition rates). This paper describes optimization algorithms that respond to stated QoS expectations (about acquisition rate, delivery time, energy consumption and lifetime) when making routing, placement, and timing decisions for in-WSN query processing. The paper shows experimentally that QoS-awareness offers significant benefits in responding to, and reconciling, diverse QoS expectations, thereby enabling QoS-aware SNQPs to generate efficient QEPs for a broader range WSN applications than has hitherto been possible.

[1]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[2]  John Anderson,et al.  An analysis of a large scale habitat monitoring application , 2004, SenSys '04.

[3]  Mihalis Yannakakis,et al.  Multiobjective query optimization , 2001, PODS '01.

[4]  Johannes Gehrke,et al.  Query Processing in Sensor Networks , 2003, CIDR.

[5]  Donald D. Chamberlin,et al.  Relational Data-Base Management Systems , 1976, CSUR.

[6]  Irving L. Traiger,et al.  System R: A Relational Data Base Management System , 1975, Computer.

[7]  Masayuki Numao,et al.  Deadline and QoS Aware Data Warehouse , 2007, VLDB.

[8]  Arun N. Swami,et al.  Optimization of large join queries: combining heuristics and combinatorial techniques , 1989, SIGMOD '89.

[9]  Katja Hose,et al.  Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN , 2011, Distributed and Parallel Databases.

[10]  Gregory J. Pottie,et al.  Wireless integrated network sensors , 2000, Commun. ACM.

[11]  Jennifer Widom,et al.  STREAM: The Stanford Stream Data Manager , 2003, IEEE Data Eng. Bull..

[12]  Panos K. Chrysanthis,et al.  Optimized query routing trees for wireless sensor networks , 2011, Inf. Syst..

[13]  Wolf-Tilo Balke,et al.  Multi-objective Query Processing for Database Systems , 2004, VLDB.

[14]  Wolfgang Lehner,et al.  Multi-objective scheduling for real-time data warehouses , 2009, Computer Science - Research and Development.

[15]  Wen-Syan Li,et al.  QoS-based data access and placement for federated systems , 2005, VLDB 2005.

[16]  Wen-Syan Li,et al.  QoS-based Data Access and Placement for Federated Information Systems , 2005, VLDB.

[17]  Wei Hong,et al.  TinyDB: an acquisitional query processing system for sensor networks , 2005, TODS.

[18]  Dimitrios Gunopulos,et al.  Region Sampling: Continuous Adaptive Sampling on Sensor Networks , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[19]  Michael Stonebraker,et al.  Load Shedding in a Data Stream Manager , 2003, VLDB.

[20]  Jens Palsberg,et al.  Avrora: scalable sensor network simulation with precise timing , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[21]  Gyula Simon,et al.  Countersniper system for urban warfare , 2005, TOSN.

[22]  Yannis E. Ioannidis,et al.  Randomized algorithms for optimizing large join queries , 1990, SIGMOD '90.

[23]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[24]  Kirk Martinez,et al.  Environmental Sensor Networks: A revolution in the earth system science? , 2006 .

[25]  Angelo Brayner,et al.  Toward adaptive query processing in wireless sensor networks , 2007, Signal Process..

[26]  Christian Y. A. Brenninkmeijer,et al.  A Semantics for a Query Language over Sensors, Streams and Relations , 2008, BNCOD.

[27]  Philip Levis,et al.  The nesC language: a holistic approach to networked embedded systems , 2003, SIGP.

[28]  Alex Delis,et al.  Collection trees for event-monitoring queries , 2011, Inf. Syst..

[29]  Stanley B. Zdonik,et al.  Staying FIT: Efficient Load Shedding Techniques for Distributed Stream Processing , 2007, VLDB.

[30]  Goetz Graefe,et al.  Encapsulation of parallelism in the Volcano query processing system , 1990, SIGMOD '90.

[31]  Ying Xing,et al.  Providing resiliency to load variations in distributed stream processing , 2006, VLDB.

[32]  Michael Stonebraker,et al.  Monitoring Streams - A New Class of Data Management Applications , 2002, VLDB.

[33]  Stephen P. Boyd,et al.  A tutorial on geometric programming , 2007, Optimization and Engineering.

[34]  Christof Vömel,et al.  ScaLAPACK's MRRR algorithm , 2010, TOMS.

[35]  Erich M. Nahum,et al.  Achieving Class-Based QoS for Transactional Workloads , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[36]  Ian W. Marshall,et al.  Multi-sensor Cross Correlation for Alarm Generation in a Deployed Sensor Network , 2007, EuroSSC.

[37]  Christian Y. A. Brenninkmeijer,et al.  SNEE: a query processor for wireless sensor networks , 2011, Distributed and Parallel Databases.

[38]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[39]  Andreas Willig,et al.  Protocols and Architectures for Wireless Sensor Networks , 2005 .

[40]  Sébastien Le Digabel,et al.  Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .

[41]  Ixent Galpin,et al.  QUALITY OF SERVICE AWARE OPTIMIZATION OF SENSOR NETWORK QUERIES , 2010 .

[42]  David E. Culler,et al.  The nesC language: A holistic approach to networked embedded systems , 2003, PLDI.

[43]  S. Sudarshan,et al.  Pipelining in multi-query optimization , 2001, PODS '01.

[44]  Christian Y. A. Brenninkmeijer,et al.  Validated cost models for sensor network queries , 2009, DMSN '09.

[45]  J. J. Sharples,et al.  A simple index for assessing fire danger rating , 2009, Environ. Model. Softw..

[46]  Kirk Martinez,et al.  Glacsweb: a sensor network for hostile environments , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..

[47]  Margaret Martonosi,et al.  Hardware design experiences in ZebraNet , 2004, SenSys '04.

[48]  Matt Welsh,et al.  Fidelity and yield in a volcano monitoring sensor network , 2006, OSDI '06.