Two‐phase flows in karstic geometry

Multiphase flow phenomena are ubiquitous. Common examples include coupled atmosphere and ocean system (air and water), oil reservoir (water, oil, and gas), and cloud and fog (water vapor, water, and air). Multiphase flows also play an important role in many engineering and environmental science applications. In some applications such as flows in unconfined karst aquifers, karst oil reservoir, proton membrane exchange fuel cell, multiphase flows in conduits, and in porous media must be considered together. Geometric configurations that contain both conduit (or vug) and porous media are termed karstic geometry. Despite the importance of the subject, little work has been performed on multiphase flows in karstic geometry. In this paper, we present a family of phase–field (diffusive interface) models for two-phase flow in karstic geometry. These models together with the associated interface boundary conditions are derived utilizing Onsager's extremum principle. The models derived enjoy physically important energy laws. A uniquely solvable numerical scheme that preserves the associated energy law is presented as well. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[2]  Weidong Zhao,et al.  Finite Element Approximations for Stokes–darcy Flow with Beavers–joseph Interface Conditions * , 2022 .

[3]  Weizhu Bao,et al.  Multiscale modeling and analysis for materials simulation , 2011 .

[4]  C. Groves,et al.  Geological Survey Karst Interest Group Proceedings , Shepherdstown , West Virginia , August 20-22 , 2002 , 2002 .

[5]  E. C. Childs Dynamics of fluids in Porous Media , 1973 .

[6]  Christof Eck,et al.  On a phase-field model for electrowetting , 2009 .

[7]  Andro Mikelico,et al.  ON THE INTERFACE BOUNDARY CONDITION OF , 2000 .

[8]  Steven M. Wise,et al.  Analysis of a Darcy-Cahn-Hilliard Diffuse Interface Model for the Hele-Shaw Flow and Its Fully Discrete Finite Element Approximation , 2011, SIAM J. Numer. Anal..

[9]  G. Taylor,et al.  The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  Masao Doi,et al.  Variational principle for the Kirkwood theory for the dynamics of polymer solutions and suspensions , 1983 .

[11]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[12]  P. A. Madsen,et al.  Numerical modelling of tsunami generation and run-up, and the surf similarity of solitary waves , 2007 .

[13]  A. Bejan,et al.  Convection in Porous Media , 1992 .

[14]  Francesco dell’Isola,et al.  Boundary Conditions at Fluid-Permeable Interfaces in Porous Media: a Variational Approach , 2009 .

[15]  Eve L. Kuniansky U.S. Geological Survey Karst Interest Group Proceedings, Bowling Green, Kentucky, May 27-29, 2008 , 2008 .

[16]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[17]  E. Miglio,et al.  Mathematical and numerical models for coupling surface and groundwater flows , 2002 .

[18]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[19]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[20]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[21]  Songmu Zheng,et al.  The Cahn-Hilliard equation with dynamic boundary conditions , 2003, Advances in Differential Equations.

[22]  Zhijiang Kang,et al.  A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs , 2011 .

[23]  D. Loper,et al.  Contaminant sequestration in karstic aquifers: Experiments and quantification , 2008 .

[24]  John William Strutt,et al.  Scientific Papers: On the Theory of Surface Forces. II. Compressible Fluids , 2009 .

[25]  Wenbin Chen,et al.  A Parallel Robin-Robin Domain Decomposition Method for the Stokes-Darcy System , 2011, SIAM J. Numer. Anal..

[26]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[27]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[28]  Marco Antonio Fontelos,et al.  On a Phase-Field Model for Electrowetting and Other Electrokinetic Phenomena , 2011, SIAM J. Math. Anal..

[29]  VIVETTE GIRAULT,et al.  DG Approximation of Coupled Navier-Stokes and Darcy Equations by Beaver-Joseph-Saffman Interface Condition , 2009, SIAM J. Numer. Anal..

[30]  Clint Dawson,et al.  Analysis of Discontinuous Finite Element Methods for Ground Water/Surface Water Coupling , 2006, SIAM J. Numer. Anal..

[31]  M. Gunzburger,et al.  Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition , 2010 .

[32]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[33]  Jinchao Xu,et al.  Numerical Solution to a Mixed Navier-Stokes/Darcy Model by the Two-Grid Approach , 2009, SIAM J. Numer. Anal..

[34]  A. Quarteroni,et al.  Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations , 2003 .

[35]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[36]  Andrea Lamorgese,et al.  Phase Field Approach to Multiphase Flow Modeling , 2011 .

[37]  B. Katz,et al.  Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream , 1998 .

[38]  H. Abels,et al.  Thermodynamically Consistent, Frame Indifferent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities , 2011, 1104.1336.

[39]  Daniel D. Joseph,et al.  Fundamentals of two-fluid dynamics , 1993 .

[40]  Wenbin Chen,et al.  Efficient and Long-Time Accurate Second-Order Methods for Stokes-Darcy System , 2012, 1211.0567.

[41]  Béatrice Rivière,et al.  Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .

[42]  Lars Onsager,et al.  Fluctuations and Irreversible Processes , 1953 .

[43]  Mehdi Raessi,et al.  Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the level set method , 2012 .

[44]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[45]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[46]  Sarah Rothstein,et al.  Waves In Fluids , 2016 .

[47]  Max Gunzburger,et al.  Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes–Brinkman system☆ , 2010 .

[48]  Chang Shu,et al.  Diffuse interface model for incompressible two-phase flows with large density ratios , 2007, J. Comput. Phys..

[49]  Eberhard Zeidler,et al.  Variational methods and optimization , 1985 .

[50]  Helmut Abels,et al.  On a Diffuse Interface Model for Two-Phase Flows of Viscous, Incompressible Fluids with Matched Densities , 2009 .

[51]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[52]  Mark Sussman,et al.  A Coupled Level Set-Moment of Fluid Method for Incompressible Two-Phase Flows , 2013, J. Sci. Comput..

[53]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[54]  Naturhistorisch-medizinischer Vereins zu Heidelberg Verhandlungen des Naturhistorisch-Medizinischen Vereins zu Heidelberg , 2009 .

[55]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[56]  M. Grae Worster,et al.  Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification , 2006, Journal of Fluid Mechanics.

[57]  A. Quarteroni,et al.  Navier-Stokes/Darcy Coupling: Modeling, Analysis, and Numerical Approximation , 2009 .

[58]  S. M. Wise,et al.  Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..

[59]  Paul Papatzacos,et al.  Diffuse-Interface Models for Two-Phase Flow , 2000 .

[60]  P. Sheng,et al.  A variational approach to moving contact line hydrodynamics , 2006, Journal of Fluid Mechanics.

[61]  I. P. Jones,et al.  Low Reynolds number flow past a porous spherical shell , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[62]  Sam Howison A note on the two-phase Hele-Shaw problem , 2000, Journal of Fluid Mechanics.

[63]  Jonathan Goodman,et al.  Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime , 2002 .

[64]  Mark Sussman,et al.  A sharp interface method for incompressible two-phase flows , 2007, J. Comput. Phys..

[65]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[66]  C. Eck,et al.  ON A PHASE-FIELD MODEL FOR ELECTROWETTING , 2009 .

[67]  H. Abels,et al.  Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids , 2008, 0810.3987.

[68]  Jie Shen,et al.  Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach , 2011 .

[69]  E. Greene,et al.  Quantitative Approaches in Characterizing Karst Aquifers , 2001 .

[70]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[71]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[72]  Alfio Quarteroni,et al.  Robin-Robin Domain Decomposition Methods for the Stokes-Darcy Coupling , 2007, SIAM J. Numer. Anal..

[73]  R. Sec.,et al.  XX. On the theory of surface forces.—II. Compressible fluids , 1892 .

[74]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[75]  Hao Wu,et al.  Long-time behavior for the Hele-Shaw-Cahn-Hilliard system , 2012, Asymptot. Anal..

[76]  Willi Jäger,et al.  On The Interface Boundary Condition of Beavers, Joseph, and Saffman , 2000, SIAM J. Appl. Math..

[77]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[78]  E Weinan,et al.  Phase separation in incompressible systems , 1997 .

[79]  Steven M. Wise,et al.  Unconditionally stable schemes for equations of thin film epitaxy , 2010 .

[80]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[81]  Ping Sheng,et al.  Molecular scale contact line hydrodynamics of immiscible flows. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  J. Goodman,et al.  Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration , 2002 .

[83]  E. Zeidler Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .

[84]  Edriss S. Titi,et al.  Analysis of a mixture model of tumor growth , 2012, European Journal of Applied Mathematics.

[85]  Jie Shen,et al.  A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..

[86]  Daniel D. Joseph,et al.  Mathematical theory and applications , 1993 .

[87]  Jie Shen,et al.  An Efficient, Energy Stable Scheme for the Cahn-Hilliard-Brinkman System , 2013 .

[88]  John William Strutt,et al.  On the Theory of Surface Forces , 2009 .

[89]  Béatrice Rivière,et al.  A strongly conservative finite element method for the coupling of Stokes and Darcy flow , 2010, J. Comput. Phys..

[90]  Zhifei Zhang,et al.  Well-posedness of the Hele–Shaw–Cahn–Hilliard system , 2010, 1012.2944.

[91]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[92]  MAX GUNZBURGER,et al.  EFFICIENT AND LONG-TIME ACCURATE SECOND-ORDER METHODS FOR STOKES-DARCY SYSTEMS , 2012 .

[93]  M. Muskat Two Fluid Systems in Porous Media. The Encroachment of Water into an Oil Sand , 1934 .

[94]  Charles Fefferman,et al.  Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves , 2011, 1102.1902.

[95]  C. Hebling,et al.  Visualization of water buildup in the cathode of a transparent PEM fuel cell , 2003 .

[96]  Philipp Maass,et al.  Novel Surface Modes in Spinodal Decomposition , 1997 .

[97]  Christopher E. Brennen,et al.  Fundamentals of Multiphase Flow , 2005 .

[98]  L. Evans,et al.  Partial Differential Equations , 1941 .

[99]  Daniel D. Joseph,et al.  Lubricated transport, drops and miscible liquids , 1993 .

[100]  Ann S. Almgren,et al.  An adaptive level set approach for incompressible two-phase flows , 1997 .