Shape-controlled synthesis of Ni-CeO2@PANI nanocomposites and their synergetic effects on supercapacitors

[1]  Q. Hao,et al.  Polyaniline-assisted growth of MnO2 ultrathin nanosheets on graphene and porous graphene for asymmetric supercapacitor with enhanced energy density , 2018 .

[2]  J. Ting,et al.  Hybridized 1T/2H MoS2 Having Controlled 1T Concentrations and its use in Supercapacitors. , 2017, Chemistry.

[3]  J. Ting,et al.  Direct Growth of MoS2 Nanowalls on Carbon Nanofibers for Use in Supercapacitor , 2017, Scientific Reports.

[4]  P. Srinivasan,et al.  One-step preparation of sulfonated carbon and subsequent preparation of hybrid material with polyaniline salt: a promising supercapacitor electrode material , 2017, Journal of Solid State Electrochemistry.

[5]  R. K. Jena,et al.  Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO2@PANI) Composite and Self-Assembled 3D Pillared Graphene Foam for Asymmetric All-Solid-State Flexible Supercapacitor Application. , 2017, ACS applied materials & interfaces.

[6]  J. Ting,et al.  MnO2 with controlled phase for use in supercapacitors , 2017 .

[7]  Sudip Malik,et al.  Reduced Graphene Oxide/Fe3O4/Polyaniline Nanostructures as Electrode Materials for an All-Solid-State Hybrid Supercapacitor , 2017 .

[8]  Yan Li,et al.  Fabrication of vesicular polyaniline using hard templates and composites with graphene for supercapacitor , 2017, Journal of Solid State Electrochemistry.

[9]  Y. Hayakawa,et al.  Ni-CeO2 spherical nanostructures for magnetic and electrochemical supercapacitor applications. , 2017, Physical chemistry chemical physics : PCCP.

[10]  Yi Tan,et al.  Synthesis of a highly efficient 3D graphene-CNT-MnO2-PANI nanocomposite as a binder free electrode material for supercapacitors. , 2016, Physical chemistry chemical physics : PCCP.

[11]  Yutao Li,et al.  Facile Synthesis of MoS2/Reduced Graphene Oxide@Polyaniline for High-Performance Supercapacitors. , 2016, ACS applied materials & interfaces.

[12]  P. Ajayan,et al.  Bridging of Ultrathin NiCo2O4 Nanosheets and Graphene with Polyaniline: A Theoretical and Experimental Study , 2016 .

[13]  S. Mane,et al.  Enhanced specific capacitance and supercapacitive properties of polyaniline–iron oxide (PANI–Fe2O3) composite electrode material , 2016, Journal of Materials Science.

[14]  Xiaoqian Wang,et al.  Strong and Robust Polyaniline-Based Supramolecular Hydrogels for Flexible Supercapacitors. , 2016, Angewandte Chemie.

[15]  Y. Tong,et al.  Enhanced Catalytic Activity and Stability of Pt/CeO2/PANI Hybrid Hollow Nanorod Arrays for Methanol Electro-oxidation , 2016 .

[16]  G. Machado,et al.  Effect of TiO2 Nanoparticles on Polyaniline Films Electropolymerized at Different pH , 2016 .

[17]  Hongyang Zhao,et al.  Core–shell structured CeO2@MoS2 nanocomposites for high performance symmetric supercapacitors , 2016 .

[18]  Yanzhao Yang,et al.  The promoting influence of nickel species in the controllable synthesis and catalytic properties of nickel–ceria catalysts , 2016 .

[19]  Tingmei Wang,et al.  Synthesis and Electrochemical Performance of CeO2/PPy Nanocomposites: Interfacial Effect , 2016 .

[20]  A. Xu,et al.  A core–shell structure of polyaniline coated protonic titanate nanobelt composites for both Cr(VI) and humic acid removal , 2016 .

[21]  H. Ju,et al.  Gold Nanoparticles Deposited Polyaniline-TiO2 Nanotube for Surface Plasmon Resonance Enhanced Photoelectrochemical Biosensing. , 2016, ACS applied materials & interfaces.

[22]  J. Ting,et al.  One step microwaved-assisted hydrothermal synthesis of nitrogen doped graphene for high performance of supercapacitor , 2015 .

[23]  V. Pavlínek,et al.  MnO2 nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes , 2015 .

[24]  P. R. Deshmukh,et al.  Chemical synthesis of PANI–TiO2 composite thin film for supercapacitor application , 2015 .

[25]  Wen Zhou,et al.  α-Fe2O3@PANI Core-Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. , 2015, ACS applied materials & interfaces.

[26]  Y. Hayakawa,et al.  Facile synthesis of graphene-CeO2 nanocomposites with enhanced electrochemical properties for supercapacitors. , 2015, Dalton transactions.

[27]  Yan Wang,et al.  A facile synthesis of mesoporous Co3O4/CeO2 hybrid nanowire arrays for high performance supercapacitors , 2015 .

[28]  Xiujian Zhao,et al.  Synergetic Effect between Photocatalysis on TiO2 and Thermocatalysis on CeO2 for Gas-Phase Oxidation of Benzene on TiO2/CeO2 Nanocomposites , 2015 .

[29]  Zhiyu Wang,et al.  Dually fixed SnO2 nanoparticles on graphene nanosheets by polyaniline coating for superior lithium storage. , 2015, ACS applied materials & interfaces.

[30]  Wenping Hu,et al.  Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors , 2015 .

[31]  Q. Li,et al.  Enhanced sensitivity and stability of room-temperature NH₃ sensors using core-shell CeO₂ nanoparticles@cross-linked PANI with p-n heterojunctions. , 2014, ACS applied materials & interfaces.

[32]  B. Yan,et al.  In situ preparation of SnO2@polyaniline nanocomposites and their synergetic structure for high-performance supercapacitors , 2014 .

[33]  Q. Ma,et al.  Dye-sensitized solar cells based on flower-shaped α-Fe2O3 as a photoanode and reduced graphene oxide–polyaniline composite as a counter electrode , 2013 .

[34]  Y. Tong,et al.  Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation. , 2013, Journal of the American Chemical Society.

[35]  Hongxiao Yang,et al.  A facile hydrothermal synthesis of 3D flowerlike CeO2via a cerium oxalate precursor , 2013 .

[36]  A. Hirata,et al.  Enhanced supercapacitor performance of MnO2 by atomic doping. , 2013, Angewandte Chemie.

[37]  Lichun Dong,et al.  Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity. , 2012, Journal of the American Chemical Society.

[38]  R. V. Salvatierra,et al.  Resonant Raman spectroscopy and spectroelectrochemistry characterization of carbon nanotubes/polyaniline thin film obtained through interfacial polymerization , 2012 .

[39]  Y. Tong,et al.  Design and synthesis of MnO₂/Mn/MnO₂ sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. , 2012, Nano letters.

[40]  Chunzhong Li,et al.  A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. , 2012, Nanoscale.

[41]  Quli Fan,et al.  One‐Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications , 2011 .

[42]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[43]  Y. Tong,et al.  Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: Controllable electrochemical synthesis and enhanced supercapacitor performances , 2011 .

[44]  Kai Zhang,et al.  Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes , 2010 .

[45]  Ling Liu,et al.  Fabrication of Monodisperse CeO2 Hollow Spheres Assembled by Nano-octahedra , 2010 .

[46]  Bin Dong,et al.  Preparation and electrochemical characterization of polyaniline/ multi-walled carbon nanotubes composites for supercapacitor , 2007 .

[47]  Jianjun Chen,et al.  Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion , 2018 .

[48]  Guocheng Yang,et al.  Synthesis of vertical aligned TiO2@polyaniline core–shell nanorods for high-performance supercapacitors , 2015 .