Perfect and Quasi-Perfect Codes Under the $l_{p}$ Metric

A long-standing conjecture of Golomb and Welch, raised in 1970, states that there is no perfect <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula> error correcting Lee code of length <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">$n\geq 3$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$r>1$ </tex-math></inline-formula>. In this paper, we study perfect codes in <inline-formula> <tex-math notation="LaTeX">$\mathbb {Z}^{n}$ </tex-math></inline-formula> under the <inline-formula> <tex-math notation="LaTeX">$l_{p}$ </tex-math></inline-formula> metric, where <inline-formula> <tex-math notation="LaTeX">$1\leq p<\infty $ </tex-math></inline-formula>. We show some nonexistence results of linear perfect <inline-formula> <tex-math notation="LaTeX">$l_{p}$ </tex-math></inline-formula> codes for <inline-formula> <tex-math notation="LaTeX">$p=1$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$2\leq p<\infty $ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$r=2^{1/p},3^{1/p}$ </tex-math></inline-formula>. We also give an algebraic construction of quasi-perfect <inline-formula> <tex-math notation="LaTeX">$l_{p}$ </tex-math></inline-formula> codes for <inline-formula> <tex-math notation="LaTeX">$p=1, r=2$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$2\leq p<\infty , r=2^{1/p}$ </tex-math></inline-formula>.

[1]  Tuvi Etzion,et al.  Product Constructions for Perfect Lee Codes , 2011, IEEE Transactions on Information Theory.

[2]  Karel A. Post Nonexistence Theorems on Perfect Lee Codes over Large Alphabets , 1975, Inf. Control..

[3]  Simon Špacapan,et al.  Nonexistence of face-to-face four-dimensional tilings in the Lee metric , 2007, Eur. J. Comb..

[4]  Werner Ulrich,et al.  Non-binary error correction codes , 1957 .

[5]  Peter Horák,et al.  A new approach towards the Golomb-Welch conjecture , 2014, Eur. J. Comb..

[6]  Cristobal Camarero,et al.  Quasi-Perfect Lee Codes of Radius 2 and Arbitrarily Large Dimension , 2014, IEEE Transactions on Information Theory.

[7]  Peter Horák,et al.  Diameter Perfect Lee Codes , 2012, IEEE Transactions on Information Theory.

[8]  Bella Bose,et al.  Quasi-perfect Lee distance codes , 2003, IEEE Trans. Inf. Theory.

[9]  Bruce M. Kapron,et al.  The Cayley Graphs Associated With Some Quasi-Perfect Lee Codes Are Ramanujan Graphs , 2016, IEEE Transactions on Information Theory.

[10]  Italo J. Dejter,et al.  A generalization of Lee codes , 2014, Des. Codes Cryptogr..

[11]  Sueli I. Rodrigues Costa,et al.  Quasi-perfect codes in the ℓp metric , 2015, ArXiv.

[12]  C. Y. Lee,et al.  Some properties of nonbinary error-correcting codes , 1958, IRE Trans. Inf. Theory.

[13]  A. Campello,et al.  Perfect codes in the lp metric , 2015, Eur. J. Comb..

[14]  S. Golomb,et al.  Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .

[15]  P. Horak Tilings in Lee metric , 2009, Eur. J. Comb..

[16]  Timo Lepistö A Modification of the Elias-Bound and Nontexistence Theorems for Perfect Codes in the Lee-Metric , 1981, Inf. Control..

[17]  Sylvain Gravier,et al.  On the Non-existence of 3-Dimensional Tiling in the Lee Metric , 1998, Eur. J. Comb..

[18]  Peter Horák,et al.  Non-periodic Tilings of ℝn by Crosses , 2012, Discret. Comput. Geom..

[19]  Eitan Yaakobi,et al.  Coding for the Lee and Manhattan Metrics With Weighing Matrices , 2013, IEEE Trans. Inf. Theory.

[20]  P. Horak On perfect Lee codes , 2009, Discret. Math..

[21]  Dongryul Kim Nonexistence of perfect 2-error-correcting Lee codes in certain dimensions , 2017, Eur. J. Comb..