Forcing over Models of Determinacy

A theorem of Woodin states that the existence of a proper class of Woodin cardinals implies that the theory of the inner model L(ℝ) cannot be changed by set forcing. The Axiom of Determinacy is part of this fixed theory for L(ℝ). The partial order ℙmax is a forcing construction in L(ℝ) which lifts the absoluteness properties of L(ℝ) to models of the Axiom of Choice. The structure H(ω 2) in the ℙmax extension of L(ℝ) (assuming AD L(ℝ)) satisfies every Π2 sentence φ for H(ω 2) which is forceable from a proper class of Woodin cardinals. Furthermore, the partial order ℙmax can be easily varied to produce other consistency results and canonical models.

[1]  Steve Jackson,et al.  Structural Consequences of AD , 2010 .

[2]  P. Welch,et al.  THE AXIOM OF DETERMINACY, FORCING AXIOMS, AND THE NONSTATIONARY IDEAL (de Gruyter Series in Logic and its Applications 1) , 2001 .

[3]  Daniel Evan Seabold Chang's Conjecture and The Non-Stationary Ideal , 2001, J. Symb. Log..

[4]  Per-Åke Larson Martin's Maximum and the Pmaxaxiom(*) , 2000, Ann. Pure Appl. Log..

[5]  Peter Koellner,et al.  The Continuum Hypothesis , 2011 .

[6]  Paul Larson Saturation, Suslin trees and meager sets , 2005, Arch. Math. Log..

[7]  Saharon Shelah,et al.  Canonical Models for N1-Combinatorics , 1999, Ann. Pure Appl. Log..

[8]  S. Shelah,et al.  Martin's Maximum, saturated ideals and non-regular ultrafilters. Part II , 1988 .

[9]  M. Foreman Ideals and Generic Elementary Embeddings , 2010 .

[10]  W. Hugh Woodin The cardinals below |[omega1] , 2006, Ann. Pure Appl. Log..

[11]  A. Kanamori The Higher Infinite , 1994 .

[12]  Saharon Shelah,et al.  Proper and Improper Forcing , 1998 .

[13]  Saharon Shelah,et al.  Large cardinals imply that every reasonably definable set of reals is lebesgue measurable , 1990 .

[14]  Chain conditions in maximal models , 2001 .

[15]  John R. Steel,et al.  The extent of scales in L(R) , 1983 .

[16]  P. Larson An variation for one souslin tree , 1999 .

[17]  Donald A. Martin,et al.  A Basis Theorem for ∑ 1 3 Sets of Reals , 1969 .

[18]  Andreas Blass,et al.  Combinatorial Cardinal Characteristics of the Continuum , 2010 .

[19]  Paul B. Larson,et al.  The Stationary Tower: Notes on a Course by W , 2004 .

[20]  W. Hugh Woodin,et al.  The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal , 1999 .

[21]  Robert M. Solovay,et al.  The independence of DC from AD , 2020, Large Cardinals, Determinacy and Other Topics.

[22]  Yiannis N. Moschovakis,et al.  Cabal Seminar 79–81 , 1983 .

[23]  W. Hugh Woodin,et al.  Large Cardinals from Determinacy , 2010 .

[24]  Godehard Link Set Theory after Russell: The Journey Back to Eden , 2004 .

[25]  Showing OCA in Pmax-style extensions , 1999, math/9911052.

[26]  Yuzuru Kakuda,et al.  On a condition for Cohen extensions which preserve precipitous ideals , 1981, Journal of Symbolic Logic.

[27]  John R. Steel,et al.  An Outline of Inner Model Theory , 2010 .

[28]  John R. Steel,et al.  A proof of projective determinacy , 1989 .

[29]  Yiannis N. Moschovakis,et al.  Cabal Seminar 76–77 , 1978 .

[30]  Noa Goldring Woodin Cardinals and Presaturated Ideals , 1992, Ann. Pure Appl. Log..

[31]  P. D. Welch,et al.  Σ31 absoluteness and the second uniform indiscernible , 1998 .

[32]  Per-Åke Larson An Smax Variation for One Souslin Tree , 1999, J. Symb. Log..

[33]  Y. Moschovakis Descriptive Set Theory , 1980 .

[34]  P. Larson,et al.  An Ω-logic Primer , 2006 .

[35]  Stevo Todorcevic,et al.  Partition Problems In Topology , 1989 .

[36]  R. Solovay A model of set-theory in which every set of reals is Lebesgue measurable* , 1970 .

[37]  W. Hugh Woodin,et al.  Some consistency results in ZFC using AD , 2020, Large Cardinals, Determinacy and Other Topics.

[38]  Menachem Magidor Precipitous ideals and Σ14 setssets , 1980 .

[39]  John R. Steel,et al.  Two consequences of determinacy consistent with choice , 1982 .

[40]  The Ω conjecture , 2001 .

[41]  Matthew Foreman,et al.  Large Cardinals and Definable Counterexamples to the Continuum Hypothesis , 1995, Ann. Pure Appl. Log..

[42]  R. M. Solovay,et al.  Some Applications of Almost Disjoint Sets , 1970 .

[43]  W. Hugh Woodin,et al.  P-points in Qmax models , 2003, Ann. Pure Appl. Log..