Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation

Among promising color centers for single-photon sources in diamond, the negatively charged silicon-vacancy (SiV−) has 70% of its emission to the zero-phonon line (ZPL), in contrast to the negatively charged nitrogen vacancy (NV−), which has a broad spectrum. Fabricating single centers of useful defect complexes with high yield and excellent grown-in defect properties by ion implantation has proven to be challenging. We have fabricated bright single SiV− centers by 60-keV focused ion beam implantation and subsequent annealing at 1000 °C with high positioning accuracy and a high yield of 15%.

[1]  T. Plakhotnik,et al.  All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz−1/2 , 2015, Nanotechnology.

[2]  T. Teraji Isotopic enrichment of diamond using microwave plasma-assisted chemical vapor deposition with high carbon conversion efficiency , 2014 .

[3]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[4]  F. Jelezko,et al.  Multiple intrinsically identical single-photon emitters in the solid state , 2013, Nature Communications.

[5]  M. Doherty,et al.  Electronic structure of the negatively charged silicon-vacancy center in diamond , 2013, 1310.3131.

[6]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[7]  F. Jelezko,et al.  Statistical investigations on nitrogen-vacancy center creation , 2013, 1303.3730.

[8]  T. Ohshima,et al.  Strongly coupled diamond spin qubits by molecular nitrogen implantation , 2013, 1311.0978.

[9]  Kristian Lauritsen,et al.  Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution , 2013, 1310.1220.

[10]  M. Markham,et al.  Extending spin coherence times of diamond qubits by high-temperature annealing , 2013, 1309.4316.

[11]  Liam P. McGuinness,et al.  Nitrogen-vacancy centers close to surfaces , 2013 .

[12]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[13]  C. Trautmann,et al.  Room-temperature entanglement between single defect spins in diamond , 2012, Nature Physics.

[14]  Martin Fischer,et al.  Low-temperature investigations of single silicon vacancy colour centres in diamond , 2012, 1210.3201.

[15]  S. Takeuchi,et al.  Effect of Substrates on the Temperature Dependence of Fluorescence Spectra of Nitrogen Vacancy Centers in Diamond Nanocrystals , 2012 .

[16]  Christoph Becher,et al.  Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. , 2012, Optics express.

[17]  Giorgio Ferrari,et al.  Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor. , 2012, Nature nanotechnology.

[18]  C. Santori,et al.  Coupling of nitrogen-vacancy centers to photonic crystal resonators in monocrystalline diamond , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[19]  Toshiharu Makino,et al.  Electrically driven single-photon source at room temperature in diamond , 2012, Nature Photonics.

[20]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[21]  E. Hu,et al.  Coupling of Silicon-Vacancy Centers to a Single Crystal Diamond Cavity , 2012 .

[22]  D. F. Ogletree,et al.  Effects of low-energy electron irradiation on formation of nitrogen–vacancy centers in single-crystal diamond , 2011, 1111.5055.

[23]  J. Roch,et al.  Diamond based light-emitting diode for visible single-photon emission at room temperature , 2011 .

[24]  S. Gsell,et al.  Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium , 2011, 1108.3743.

[25]  Igor Aharonovich,et al.  Diamond-based single-photon emitters , 2011 .

[26]  Martin Fischer,et al.  Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium , 2010, 1008.4736.

[27]  J. Rarity,et al.  Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses , 2010, 1006.2093.

[28]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[29]  Matthias Steiner,et al.  Enhanced generation of single optically active spins in diamond by ion implantation. , 2010 .

[30]  C. Su,et al.  High-performance diamond-based single-photon sources for quantum communication , 2009, 0904.2267.

[31]  H. Weinfurter,et al.  Single photon emission from SiV centres in diamond produced by ion implantation , 2006 .

[32]  Takahiro Shinada,et al.  Enhancing semiconductor device performance using ordered dopant arrays , 2005, Nature.

[33]  F. Jelezko,et al.  Generation of single color centers by focused nitrogen implantation , 2005, cond-mat/0505063.

[34]  M. Orrit,et al.  Single-photon sources , 2005 .

[35]  F. Jelezko,et al.  Stable single-photon source in the near infrared , 2004, quant-ph/0402213.

[36]  I. Ohdomari,et al.  Improvement of Focused Ion-Beam Optics in Single-Ion Implantation for Higher Aiming Precision of One-by-One Doping of Impurity Atoms into Nano-Scale Semiconductor Devices , 2002 .

[37]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[38]  Jones,et al.  The Twelve-Line 1.682 eV Luminescence Center in Diamond and the Vacancy-Silicon Complex. , 1996, Physical review letters.