Effects of mineral admixtures on fresh and hardened properties of self-compacting concretes: binary, ternary and quaternary systems

The paper presented herein investigates the effects of using supplementary cementitious materials in binary, ternary, and quaternary blends on the fresh and hardened properties of self-compacting concretes (SCCs). A total of 22 concrete mixtures were designed having a constant water/binder ratio of 0.32 and total binder content of 550 kg/m3. The control mixture contained only portland cement (PC) as the binder while the remaining mixtures incorporated binary, ternary, and quaternary cementitious blends of PC, fly ash (FA), ground granulated blast furnace slag (GGBFS), and silica fume (SF). After mixing, the fresh properties of the concretes were tested for slump flow time, L-box height ratio, V-funnel flow time, setting time, and viscosity. Moreover, compressive strength, ultrasonic pulse velocity, and electrical resistivity of the hardened concretes were measured. Test results have revealed that incorporating the mineral admixtures improved the fresh properties and rheology of the concrete mixtures. The compressive strength and electrical resistivity of the concretes with SF and GGBFS were much higher than those of the control concrete.RésuméCet article examine les effets d’utilization des additions minérales dans les mélanges binaires, ternaires et quaternaires sur les propriétés fraîches et durcies des bétons autoplaçants. Au total, les 22 mélanges de bétons ont été formulés ayant un rapport eau/liant constant de 0.32 et une teneur en liant total de 550 kg/m3. Le mélange témoin a inclus seulement un ciment portland comme le liant tandis que le reste des mélanges ont incorporé des mélanges cimentaires binaires, ternaires et quaternaires du ciment portland, cendre volante (CV), laitier de haut fourneau (LHF), et fumée de silice (FS). Après le malaxage, les propriétés fraîches des bétons ont été testées pour le temps d’étalement, le rapport de hauteur à la L-Box, le temps d’écoulement au V-funnel, le temps de prise, et la viscosité. De plus, la résistance à la compression, la vitesse d’onde ultrasonore, et la résistivité électrique des bétons durcis ont été mesurées. Les résultats des tests ont montré que l’incorporation des additions minérales a amélioré les propriétés fraîches et la rhéologie des mélanges de béton. La résistance à la compression et la résistivité électrique des bétons avec FS et LHF étaient beaucoup plus élevées que celles du béton témoin.

[1]  E. A. Whitehurst,et al.  Soniscope Tests Concrete Structures , 1951 .

[2]  Mf Pistilli,et al.  The Uniformity and Influence of Silica Fume from a U.S. Source on the Properties of Portland Cement Concrete , 1984 .

[3]  A. R. Sabouni,et al.  Influence of set-retarding superplasticisers and microsilica on setting times of pastes at various temperatures , 1993 .

[4]  Safwan A. Khedr,et al.  Characteristics of Silica‐Fume Concrete , 1994 .

[5]  T. Celik,et al.  Setting Times of Fly Ash and Slag-Cement Concretes as Affected by Curing Temperature , 1995 .

[6]  T. Naik,et al.  Influence of Fly Ash on Setting and Hardening Characteristics of Concrete Systems , 1997 .

[7]  M. Sari,et al.  High strength self-compacting concrete Original solutions associating organic and inorganic admixtures , 1999 .

[8]  J. Brooks,et al.  Effect of admixtures on the setting times of high-strength concrete , 2000 .

[9]  Kamal H. Khayat,et al.  Performance of Self-Consolidating Concrete for Casting Basement and Foundation Walls , 2000 .

[10]  R Khurana,et al.  Fly Ash in Self-Compacting Concrete , 2001 .

[11]  M. Lachemi,et al.  Self-compacting concrete incorporating high volumes of class F fly ash: Preliminary results , 2001 .

[12]  Chiara F. Ferraris,et al.  The influence of mineral admixtures on the rheology of cement paste and concrete , 2001 .

[13]  Kamal H. Khayat,et al.  Optimizing Self-Consolidating Concrete with Limestone Filler by using Statistical Factorial Design Methods , 2002 .

[14]  Mohamed Sonebi,et al.  Filling ability and plastic settlement of self-compacting concrete , 2002 .

[15]  Wenzhong Zhu,et al.  Permeation properties of self-compacting concrete , 2003 .

[16]  C. B. Srinivasan,et al.  Development of rapid-set high-strength cement using statistical experimental design , 2003 .

[17]  Kamal H. Khayat,et al.  Performance characteristics of cement grouts made with various combinations of high-range water reducer and cellulose-based viscosity modifier , 2003 .

[18]  Y. Shi,et al.  A STUDY ON THE EFFECT OF FINE MINERAL POWDERS WITH DISTINCT VITREOUS CONTENTS ON THE FLUIDITY AND RHEOLOGICAL PROPERTIES OF CONCRETE , 2004 .

[19]  Osman Ünsal Bayrak,et al.  Optimization of early flexural strength of pavement concrete with silica fume and fly ash by the Taguchi method , 2004 .

[20]  Mohammed Sonebi,et al.  Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans , 2004 .

[21]  Mohamed Lachemi,et al.  Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste , 2004 .

[22]  Taehyo Park,et al.  Rheological Properties of Cementitious Materials Containing Mineral Admixtures , 2005 .

[23]  M. Şahmaran,et al.  The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars , 2006 .

[24]  M. Moranville,et al.  Influence of organic admixtures on the rheological behaviour of cement pastes , 2006 .

[25]  Zhihui Sun,et al.  Rheometric and ultrasonic investigations of viscoelastic properties of fresh Portland cement pastes , 2006 .

[26]  Kamile Tosun,et al.  The Effect of Fly Ash and Limestone Fillers on the Viscosity and Compressive Strength of Self-compacting Repair Mortars , 2006 .