Hyperspectral Microwave Atmospheric Sounding

We introduce a new hyperspectral microwave remote sensing modality for atmospheric sounding, driven by recent advances in microwave device technology that now permit receiver arrays that can multiplex multiple broad frequency bands into more than 100 spectral channels, thus improving both the vertical and horizontal resolutions of the retrieved atmospheric profile. Global simulation studies over ocean and land in clear and cloudy atmospheres using three different atmospheric profile databases are presented that assess the temperature, moisture, and precipitation sounding capability of several notional hyperspectral systems with channels sampled near the 50-60-, 118.75-, and 183.31-GHz absorption lines. These analyses demonstrate that hyperspectral microwave operation using frequency multiplexing techniques substantially improves temperature and moisture profiling accuracy, particularly in atmospheres that challenge conventional nonhyperspectral microwave sounding systems because of high water vapor and cloud liquid water content. Retrieval performance studies are also included that compare hyperspectral microwave sounding performance to conventional microwave and hyperspectral infrared approaches, both in a geostationary and a low-Earth-orbit context, and a path forward to a new generation of high-performance all-weather sounding is discussed.

[1]  J. Powell,et al.  SiGe Receiver Front Ends for Millimeter-Wave Passive Imaging , 2008, IEEE Transactions on Microwave Theory and Techniques.

[2]  William L. Smith,et al.  Technical Note: Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere , 2009 .

[3]  Bernard Widrow,et al.  Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[4]  Frank J. Wentz,et al.  A Well Calibrated Ocean Algorithm for SSM/I , 1999 .

[5]  Hans J. Liebe,et al.  MPM—An atmospheric millimeter-wave propagation model , 1989 .

[6]  Christopher D. Barnet,et al.  Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds , 2003, IEEE Trans. Geosci. Remote. Sens..

[7]  B. Razavi,et al.  A 60-GHz CMOS receiver front-end , 2006, IEEE Journal of Solid-State Circuits.

[8]  Lei Shi,et al.  Retrieval of Atmospheric Temperature Profiles from AMSU-A Measurement Using a Neural Network Approach , 2001 .

[9]  David H. Staelin,et al.  Precipitation Retrieval Accuracies for Geo-Microwave Sounders , 2007, IEEE Trans. Geosci. Remote. Sens..

[10]  W. Smith,et al.  satellite techniques for observing the temperature structure of the atmosphere , 1972 .

[11]  Michael Pieper,et al.  Neural Network Estimation of Atmospheric Profiles Using AIRS/IASI/AMSU Data in the Presence of Clouds , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[12]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[13]  Philip W. Rosenkranz,et al.  Atmospheric 60-GHz oxygen spectrum : new laboratory measurements and line parameters , 1992 .

[14]  Hartmut H. Aumann,et al.  An anomaly correlation skill score for the evaluation of the performance of hyperspectral infrared sounders , 2009, Optical Engineering + Applications.

[15]  W. Deal,et al.  Low noise amplifier for 180 GHz frequency band , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[16]  A.J. Gasiewski,et al.  Numerical sensitivity analysis of passive EHF and SMMW channels to tropospheric water vapor, clouds, and precipitation , 1992, IEEE Trans. Geosci. Remote. Sens..

[17]  David H. Staelin,et al.  Global Millimeter-Wave Precipitation Retrievals Trained With a Cloud-Resolving Numerical Weather Prediction Model, Part I: Retrieval Design , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Todd Gaier,et al.  A Baseline for the Decadal-Survey PATH Mission , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[19]  Larrabee L. Strow,et al.  An overview of the AIRS radiative transfer model , 2003, IEEE Trans. Geosci. Remote. Sens..

[20]  F. Wentz A well‐calibrated ocean algorithm for special sensor microwave / imager , 1997 .

[21]  N E Gaut,et al.  Microwave Spectrometer on the Nimbus 5 Satellite: Meteorological and Geophysical Data , 1973, Science.

[22]  C. Muth,et al.  Advanced Technology Microwave Sounder on NPOESS and NPP , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[23]  Catherine Prigent,et al.  Microwave land emissivity calculations using AMSU measurements , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[24]  David H. Staelin,et al.  AIRS/AMSU/HSB precipitation estimates , 2003, IEEE Trans. Geosci. Remote. Sens..

[25]  Christopher Ruf,et al.  Initial Results of the Geostationary Synthetic Thinned Array Radiometer (GeoSTAR) Demonstrator Instrument , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Grant W. Petty,et al.  The response of the SSM/I to the marine environment. Part 2: A parameterization of the effect of the sea surface slope distribution on emission and reflection , 1994 .

[27]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[28]  William L. Smith,et al.  Atmospheric soundings from satellites—false expectation or the key to improved weather prediction? , 1991 .

[29]  Alan E. Lipton,et al.  Satellite sounding channel optimization in the microwave spectrum , 2003, IEEE Trans. Geosci. Remote. Sens..

[30]  David H. Staelin,et al.  NPOESS aircraft sounder testbed-microwave: observations of clouds and precipitation at 54, 118, 183, and 425 GHz , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[31]  David H. Staelin,et al.  Global Millimeter-Wave Precipitation Retrievals Trained With A Cloud-Resolving Numerical Weather-Prediction Model, Part II: Performance Evaluation , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[32]  William J. Blackwell,et al.  Neural Network Retrievals of Atmospheric Temperature and Moisture Profiles from High-Resolution Infrared and Microwave Sounding Data , 2005 .

[33]  Ian T. Nabney,et al.  Netlab: Algorithms for Pattern Recognition , 2002 .

[34]  David H. Staelin,et al.  Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite , 2000, IEEE Trans. Geosci. Remote. Sens..

[35]  Catherine Prigent,et al.  Comparisons of the Millimeter and Submillimeter Bands for Atmospheric Temperature and Water Vapor Soundings for Clear and Cloudy Skies , 2006 .

[36]  David H. Staelin,et al.  Millimeter-Wave Precipitation Retrievals and Observed-versus-Simulated Radiance Distributions: Sensitivity to Assumptions , 2007 .

[37]  William J. Blackwell,et al.  Comparative performance analyses of passive microwave systems for tropospheric sounding of temperature and water vapor profiles , 1996, Optics & Photonics.

[38]  Philip W. Rosenkranz,et al.  NPOESS Aircraft Sounder Testbed-Microwave (NAST-M): instrument description and initial flight results , 2001, IEEE Trans. Geosci. Remote. Sens..

[39]  David H. Staelin,et al.  Comparison of AMSU Millimeter-Wave Satellite Observations, MM5/TBSCAT Predicted Radiances, and Electromagnetic Models for Hydrometeors , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[40]  P. Rosenkranz,et al.  Absorption of Microwaves by Atmospheric Gases , 1993 .

[41]  William J. Blackwell,et al.  A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[42]  William J. Blackwell,et al.  Neural Network Applications in High-Resolution Atmospheric Remote Sensing , 2005 .

[43]  Tim J. Hewison,et al.  Fast generic millimeter-wave emissivity model , 1998, Asia-Pacific Environmental Remote Sensing.

[44]  Philip W. Rosenkranz,et al.  Radiative transfer solution using initial values in a scattering and absorbing atmosphere with surface reflection , 2002, IEEE Trans. Geosci. Remote. Sens..

[45]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[46]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.