Mock LISA data challenge for the Galactic white dwarf binaries

We present data analysis methods used in the detection and estimation of parameters of gravitational-wave signals from the white dwarf binaries in the mock LISA data challenge. Our main focus is on the analysis of challenge 3.1, where the gravitational-wave signals from more than $6\ifmmode\times\else\texttimes\fi{}{10}^{7}$ Galactic binaries were added to the simulated Gaussian instrumental noise. The majority of the signals at low frequencies are not resolved individually. The confusion between the signals is strongly reduced at frequencies above 5 mHz. Our basic data analysis procedure is the maximum likelihood detection method. We filter the data through the template bank at the first step of the search, then we refine parameters using the Nelder-Mead algorithm, we remove the strongest signal found and we repeat the procedure. We detect reliably and estimate parameters accurately of more than ten thousand signals from white dwarf binaries.

[1]  A. Królak,et al.  Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case , 2005, Living reviews in relativity.

[2]  S. Babak,et al.  Detecting white dwarf binaries in Mock LISA Data Challenge 3 , 2009 .

[3]  Piotr Jaranowski,et al.  Analysis of Gravitational-Wave Data , 2009 .

[4]  A. Vecchio,et al.  Studying stellar binary systems with the Laser Interferometer Space Antenna using delayed rejection Markov chain Monte Carlo methods , 2009, 0905.2976.

[5]  G. Nelemans The Galactic gravitational wave foreground , 2009, 0901.1778.

[6]  Report on the second Mock LISA Data Challenge , 2007, 0711.2667.

[7]  A. Królak,et al.  Erratum: Optimal filtering of the LISA data [Phys. Rev. D 70 , 022003 (2004)] , 2007 .

[8]  A. Vecchio,et al.  Eccentric Double White Dwarfs as LISA Sources in Globular Clusters , 2007, 0705.4287.

[9]  N. Cornish,et al.  Extracting galactic binary signals from the first round of Mock LISA Data Challenges , 2007, 0704.2917.

[10]  R. Prix Search for continuous gravitational waves: metric of the multi-detector F-statistic , 2006, gr-qc/0606088.

[11]  Stanislav Babak,et al.  An Overview of the Mock LISA Data Challenges , 2006 .

[12]  A. Vecchio,et al.  The LISA verification binaries , 2006, astro-ph/0605227.

[13]  N. Cornish,et al.  LISA data analysis using genetic algorithms , 2006, gr-qc/0601036.

[14]  S. Mohanty,et al.  Tomographic approach to resolving the distribution of LISA Galactic binaries , 2005, gr-qc/0512014.

[15]  Jeffrey A. Edlund,et al.  White-dwarf-white-dwarf galactic background in the LISA data , 2005 .

[16]  Massimo Tinto,et al.  Time delay interferometry , 2003, Living Reviews in Relativity.

[17]  M. Vallisneri Synthetic LISA: Simulating time delay interferometry in a model LISA , 2004, gr-qc/0407102.

[18]  A. Królak,et al.  Optimal filtering of the LISA data , 2004, gr-qc/0401108.

[19]  G. Nelemans,et al.  Short-period AM CVn systems as optical, X-ray and gravitational-wave sources , 2003, astro-ph/0312193.

[20]  S. Larson,et al.  The LISA optimal sensitivity , 2002, gr-qc/0209039.

[21]  N. Cornish,et al.  The LISA response function , 2002, gr-qc/0209011.

[22]  P. Astone,et al.  Data analysis of gravitational-wave signals from spinning neutron stars. IV. An all-sky search , 2000, gr-qc/0012108.

[23]  S. F. Portegies Zwart,et al.  The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. , 2001, astro-ph/0105221.

[24]  F. Rasio,et al.  LISA sources in globular clusters , 2000, gr-qc/0010020.

[25]  J. Armstrong,et al.  Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .

[26]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[27]  T. Hales Sphere packings, I , 1998, Discret. Comput. Geom..

[28]  Balasubramanian,et al.  Erratum: Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters , 1996, Physical review. D, Particles and fields.

[29]  B. Owen,et al.  Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1995, Physical review. D, Particles and fields.

[30]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[31]  Robert N. McDonough,et al.  Detection of signals in noise , 1971 .

[32]  Bernardo Kucinski 9. , 1794, The Past is an Imperfect Tense.