Trees, Forests, and Stationary States of Quantum Lindblad Systems
暂无分享,去创建一个
[1] Anthony M. Bloch,et al. Steering the Eigenvalues of the Density Operator in Hamiltonian-Controlled Quantum Lindblad Systems , 2018, IEEE Transactions on Automatic Control.
[2] Anthony M. Bloch,et al. Flag-based control of quantum purity for n=2 systems , 2016, 1602.01918.
[3] Ian R. Petersen,et al. Reaching a Quantum Consensus: Master Equations That Generate Symmetrization and Synchronization , 2014, IEEE Transactions on Automatic Control.
[4] T. Monz,et al. An open-system quantum simulator with trapped ions , 2011, Nature.
[5] B. Baumgartner,et al. The structures of state space concerning Quantum Dynamical Semigroups , 2011, 1101.3914.
[6] S. G. Schirmer,et al. Stabilizing open quantum systems by Markovian reservoir engineering , 2009, 0909.1596.
[7] B. Baumgartner,et al. Analysis of quantum semigroups with GKS–Lindblad generators: II. General , 2008, 0806.3164.
[8] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[9] D. D’Alessandro. Introduction to Quantum Control and Dynamics , 2007 .
[10] R. Xu,et al. Theory of open quantum systems , 2002 .
[11] Lorenza Viola,et al. Engineering quantum dynamics , 2001 .
[12] Andrew M. Childs,et al. Universal simulation of Markovian quantum dynamics , 2000, quant-ph/0008070.
[13] S. Chaiken. A Combinatorial Proof of the All Minors Matrix Tree Theorem , 1982 .
[14] A. Frigerio,et al. Stationary states of quantum dynamical semigroups , 1978 .
[15] Daniel J. Kleitman,et al. Matrix Tree Theorems , 1978, J. Comb. Theory, Ser. A.
[16] Herbert Spohn,et al. Approach to equilibrium for completely positive dynamical semigroups of N-level systems , 1976 .
[17] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[18] E. Sudarshan,et al. Completely Positive Dynamical Semigroups of N Level Systems , 1976 .
[19] A. Cayley. A theorem on trees , 2009 .
[20] Tosio Kato. Perturbation theory for linear operators , 1966 .