Recent Progress in Terahertz Quantum Cascade Lasers

Terahertz quantum cascade lasers (QCLs) emit radiation due to intersubband optical transitions in semiconductor superlattices that could be engineered by design. Among a variety of possible design schemes, we have pursued designs that utilize strong electron-phonon interaction in the semiconductor as a means to establish population inversion for optical gain. This report describes the recent progress in phonon-depopulated terahertz QCLs. Operation above 160 K has been realized in GaAs/AlGaAsbased QCLs with metal-metal waveguides for frequencies ranging from 1.8-4.4 THz (λ ~ 170-70 μm). A record highest operating temperature of 186 K has been demonstrated for a 3.9-THz QCL based on a diagonal design scheme. Also, operation down to a frequency of 1.45 THz (λ ~ 205 μm) has been achieved. Whereas metal-metal waveguides provide strong mode confinement and low loss at terahertz frequencies, obtaining single-mode operation in a narrow beam-pattern-posed unconventional challenges due to the subwavelength dimensions of the emitting aperture. New techniques in waveguide engineering have been developed to overcome those challenges. Finally, a unique method to tune the resonant-cavity mode of metal-metal terahertz "wire lasers" has been demonstrated to realize continuous tuning over a range of 137 GHz for a 3.8-THz QCL.

[1]  L. Bonilla,et al.  Non-linear dynamics of semiconductor superlattices , 2005 .

[2]  R. Terazzi,et al.  Population inversion by resonant tunneling in quantum wells , 2007 .

[3]  T. M. Klapwijk,et al.  Antenna model for wire lasers. , 2006, Physical review letters.

[4]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[5]  David A. Ritchie,et al.  Terahertz quantum-cascade lasers based on an interlaced photon-phonon cascade , 2004 .

[6]  Qing Hu,et al.  Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. , 2005, Optics express.

[7]  Z. R. Wasilewski,et al.  Terahertz quantum-cascade lasers based on a three-well active module , 2007 .

[8]  David A. Ritchie,et al.  THz and sub‐THz quantum cascade lasers , 2009 .

[9]  Jérôme Faist,et al.  Terahertz photonic crystal quantum cascade lasers. , 2007, Optics express.

[10]  R. Terazzi,et al.  Low threshold step well quantum cascade laser emitting at 3 THz , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[11]  Jérôme Faist,et al.  Quantum cascade lasers operating from 1.2to1.6THz , 2007 .

[12]  S. Kumar,et al.  Resonant-Phonon Terahertz Quantum-Cascade Lasers and Video-Rate Terahertz Imaging , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  Qing Hu,et al.  Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement , 2003 .

[14]  Qing Hu,et al.  Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators , 2005 .

[15]  Federico Capasso,et al.  Surface emitting terahertz quantum cascade laser with a double-metal waveguide. , 2006, Optics express.

[16]  Qing Hu,et al.  Resonant-phonon-assisted THz quantum-cascade lasers with metal–metal waveguides , 2005 .

[17]  P. Siegel Terahertz technology in biology and medicine , 2004, IEEE Transactions on Microwave Theory and Techniques.

[18]  Qing Hu,et al.  186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design , 2009 .

[19]  M Fischer,et al.  Phase locking of a 1.5 Terahertz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver. , 2009, Optics express.

[20]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[21]  David A. Ritchie,et al.  Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers , 2009 .

[22]  David A. Ritchie,et al.  High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings , 2005 .

[23]  Giles Davies,et al.  Far-infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K , 2003 .

[24]  Qing Hu,et al.  Importance of coherence for electron transport in terahertz quantum cascade lasers , 2005 .

[25]  Qing Hu,et al.  High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides. , 2007, Optics letters.

[26]  Werner Schrenk,et al.  Vertically emitting terahertz quantum cascade ring lasers , 2009 .

[27]  B. Williams,et al.  High-power terahertz quantum cascade lasers , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[28]  B. Williams,et al.  1.9 THz Quantum-cascade Lasers with One-well Injector , 2006 .

[29]  Qing Hu,et al.  Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers , 2010 .

[30]  Qing Hu,et al.  Analysis of transport properties of tetrahertz quantum cascade lasers , 2003 .

[31]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[32]  Wai Lam Chan,et al.  Imaging with terahertz radiation , 2007 .

[33]  Qing Hu,et al.  Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions , 2006 .

[34]  Qing Hu,et al.  3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation , 2003 .

[35]  Q. Hu,et al.  Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers , 2009, 0910.2959.

[36]  Qing Hu,et al.  Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides. , 2007, Optics express.

[37]  Mattias Beck,et al.  Microcavity Laser Oscillating in a Circuit-Based Resonator , 2010, Science.

[38]  Marcella Giovannini,et al.  Small optical volume terahertz emitting microdisk quantum cascade lasers , 2007 .

[39]  R. Colombelli,et al.  Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions , 2009, Nature.

[40]  J. Reno,et al.  Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation , 2009 .

[41]  Carlo Sirtori,et al.  Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range , 2007 .

[42]  A. Tredicucci,et al.  Vertically emitting microdisk lasers , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[43]  Qing Hu,et al.  Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature , 2004 .

[44]  P Khosropanah,et al.  Phase locking of a 2.7 THz quantum cascade laser to a microwave reference. , 2009, Optics letters.

[45]  A. Lee,et al.  Real-time terahertz imaging over a standoff distance (>25meters) , 2006 .

[46]  Dwight L. Woolard,et al.  Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications? , 2005, Proceedings of the IEEE.

[47]  Jérôme Faist,et al.  Low frequency terahertz quantum cascade laser operating from 1.6to1.8THz , 2006 .

[48]  H. Beere,et al.  Surface plasmon photonic structures in terahertz quantum cascade lasers. , 2006, Optics express.

[49]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[50]  Mattias Beck,et al.  Low-divergence single-mode terahertz quantum cascade laser , 2009 .

[51]  Qing Hu,et al.  Tuning a terahertz wire laser , 2009 .

[52]  Carlo Sirtori,et al.  Resonant tunneling in quantum cascade lasers , 1998 .

[53]  Sahand Hormoz,et al.  Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K. , 2008, Optics express.

[54]  J. Reno,et al.  Operation of a 1∶8-THz quantum-cascade laser above 160 K , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[55]  Qing Hu,et al.  Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides. , 2005, Optics letters.

[56]  A. Lee,et al.  Tunable terahertz quantum cascade lasers with external gratings. , 2010, Optics letters.