Sparse Generalized Eigenvalue Problem Via Smooth Optimization
暂无分享,去创建一个
[1] D. Hunter,et al. A Tutorial on MM Algorithms , 2004 .
[2] Emmanuel J. Candès,et al. NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..
[3] Wotao Yin,et al. Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
[4] E. Schlossmacher. An Iterative Technique for Absolute Deviations Curve Fitting , 1973 .
[5] Sanjo Zlobec,et al. On the Liu–Floudas Convexification of Smooth Programs , 2005, J. Glob. Optim..
[6] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[7] Gert R. G. Lanckriet,et al. A majorization-minimization approach to the sparse generalized eigenvalue problem , 2011, Machine Learning.
[8] Robert D. Nowak,et al. Majorization–Minimization Algorithms for Wavelet-Based Image Restoration , 2007, IEEE Transactions on Image Processing.
[9] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[10] Bruno Torrésani,et al. Comments on selected fundamental aspects of microarray analysis , 2005, Comput. Biol. Chem..
[11] R. Tibshirani,et al. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.
[12] Marc Teboulle,et al. Conditional Gradient Algorithmsfor Rank-One Matrix Approximations with a Sparsity Constraint , 2011, SIAM Rev..
[13] H. Hotelling. Relations Between Two Sets of Variates , 1936 .
[14] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[15] Jianhua Z. Huang,et al. Sparse principal component analysis via regularized low rank matrix approximation , 2008 .
[16] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[17] Zhi-Quan Luo,et al. A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization , 2012, SIAM J. Optim..
[18] Francisco Facchinei,et al. Decomposition by Partial Linearization: Parallel Optimization of Multi-Agent Systems , 2013, IEEE Transactions on Signal Processing.
[19] Stephen P. Boyd,et al. Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.
[20] J CandèsEmmanuel,et al. NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2011 .
[21] Olvi L. Mangasarian,et al. Machine Learning via Polyhedral Concave Minimization , 1996 .
[22] Jorge Cadima Departamento de Matematica. Loading and correlations in the interpretation of principle compenents , 1995 .
[23] Bhaskar D. Rao,et al. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..
[24] Bhaskar D. Rao,et al. An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..
[25] Jeffrey T. Chang,et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies , 2006, Nature.
[26] Shuzhong Zhang,et al. Complex Matrix Decomposition and Quadratic Programming , 2007, Math. Oper. Res..
[27] Gert R. G. Lanckriet,et al. Sparse eigen methods by D.C. programming , 2007, ICML '07.
[28] Michael I. Jordan,et al. A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..
[29] P. Holland,et al. Robust regression using iteratively reweighted least-squares , 1977 .
[30] Daniel Pérez Palomar,et al. Rank-Constrained Separable Semidefinite Programming With Applications to Optimal Beamforming , 2010, IEEE Transactions on Signal Processing.
[31] Yurii Nesterov,et al. Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..
[32] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.