Sparse Generalized Eigenvalue Problem Via Smooth Optimization

In this paper, we consider an ℓ0-norm penalized formulation of the generalized eigenvalue problem (GEP), aimed at extracting the leading sparse generalized eigenvector of a matrix pair. The formulation involves maximization of a discontinuous nonconcave objective function over a nonconvex constraint set, and is therefore computationally intractable. To tackle the problem, we first approximate the ℓ0-norm by a continuous surrogate function. Then an algorithm is developed via iteratively majorizing the surrogate function by a quadratic separable function, which at each iteration reduces to a regular generalized eigenvalue problem. A preconditioned steepest ascent algorithm for finding the leading generalized eigenvector is provided. A systematic way based on smoothing is proposed to deal with the “singularity issue” that arises when a quadratic function is used to majorize the nondifferentiable surrogate function. For sparse GEPs with special structure, algorithms that admit a closed-form solution at every iteration are derived. Numerical experiments show that the proposed algorithms match or outperform existing algorithms in terms of computational complexity and support recovery.

[1]  D. Hunter,et al.  A Tutorial on MM Algorithms , 2004 .

[2]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[3]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[4]  E. Schlossmacher An Iterative Technique for Absolute Deviations Curve Fitting , 1973 .

[5]  Sanjo Zlobec,et al.  On the Liu–Floudas Convexification of Smooth Programs , 2005, J. Glob. Optim..

[6]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[7]  Gert R. G. Lanckriet,et al.  A majorization-minimization approach to the sparse generalized eigenvalue problem , 2011, Machine Learning.

[8]  Robert D. Nowak,et al.  Majorization–Minimization Algorithms for Wavelet-Based Image Restoration , 2007, IEEE Transactions on Image Processing.

[9]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[10]  Bruno Torrésani,et al.  Comments on selected fundamental aspects of microarray analysis , 2005, Comput. Biol. Chem..

[11]  R. Tibshirani,et al.  A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.

[12]  Marc Teboulle,et al.  Conditional Gradient Algorithmsfor Rank-One Matrix Approximations with a Sparsity Constraint , 2011, SIAM Rev..

[13]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[14]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[15]  Jianhua Z. Huang,et al.  Sparse principal component analysis via regularized low rank matrix approximation , 2008 .

[16]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[17]  Zhi-Quan Luo,et al.  A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization , 2012, SIAM J. Optim..

[18]  Francisco Facchinei,et al.  Decomposition by Partial Linearization: Parallel Optimization of Multi-Agent Systems , 2013, IEEE Transactions on Signal Processing.

[19]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[20]  J CandèsEmmanuel,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2011 .

[21]  Olvi L. Mangasarian,et al.  Machine Learning via Polyhedral Concave Minimization , 1996 .

[22]  Jorge Cadima Departamento de Matematica Loading and correlations in the interpretation of principle compenents , 1995 .

[23]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[24]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[25]  Jeffrey T. Chang,et al.  Oncogenic pathway signatures in human cancers as a guide to targeted therapies , 2006, Nature.

[26]  Shuzhong Zhang,et al.  Complex Matrix Decomposition and Quadratic Programming , 2007, Math. Oper. Res..

[27]  Gert R. G. Lanckriet,et al.  Sparse eigen methods by D.C. programming , 2007, ICML '07.

[28]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[29]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[30]  Daniel Pérez Palomar,et al.  Rank-Constrained Separable Semidefinite Programming With Applications to Optimal Beamforming , 2010, IEEE Transactions on Signal Processing.

[31]  Yurii Nesterov,et al.  Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..

[32]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.