Adaptive finite element methods in geodynamics: Convection dominated mid-ocean ridge and subduction zone simulations

Purpose – The purpose of this paper is to present an adaptive finite element procedure that improves the quality of convection dominated mid-ocean ridge (MOR) and subduction zone (SZ) simulations in geodynamics. Design/methodology/approach – The method adapts the mesh automatically around regions of high-solution gradient, yielding enhanced resolution of the associated flow features. The approach utilizes an automatic, unstructured mesh generator and a finite element flow solver. Mesh adaptation is accomplished through mesh regeneration, employing information provided by an interpolation-based local error indicator, obtained from the computed solution on an existing mesh. Findings – The proposed methodology works remarkably well at improving solution accuracy for both MOR and SZ simulations. Furthermore, the method is computationally highly efficient. Originality/value – To date, successful goal-orientated/error-guided grid adaptation techniques have, to the knowledge, not been utilized within the field of geodynamics. This paper presents the first true geodynamical application of such methods.

[1]  Springer,et al.  Mantle Convection , 2020, Encyclopedia of Solid Earth Geophysics.

[2]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[3]  S. Lo A NEW MESH GENERATION SCHEME FOR ARBITRARY PLANAR DOMAINS , 1985 .

[4]  Perumal Nithiarasu,et al.  An adaptive finite element procedure for solidification problems , 2000 .

[5]  Oubay Hassan,et al.  Investigations into the applicability of adaptive finite element methods to two‐dimensional infinite Prandtl number thermal and thermochemical convection , 2007 .

[6]  J. A. George Computer implementation of the finite element method , 1971 .

[7]  Martin Crapper,et al.  h‐adaptive finite element solution of high Rayleigh number thermally driven cavity problem , 2000 .

[8]  G. Nielson The side-vertex method for interpolation in triangles☆ , 1979 .

[9]  A. Poliakov,et al.  Modes of faulting at mid-ocean ridges , 2003, Nature.

[10]  H. Iwamori Transportation of H2O and melting in subduction zones , 1998 .

[11]  References , 1971 .

[12]  Leszek Demkowicz,et al.  Adaptive finite elements for flow problems with moving boundaries. part I: Variational principles and a posteriori estimates , 1984 .

[13]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[14]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[15]  L. Rosenhead Conduction of Heat in Solids , 1947, Nature.

[16]  I. Sacks,et al.  Thermal and dynamical evolution of the upper mantle in subduction zones , 1997 .

[17]  S. Peacock Thermal and petrologic structure of subduction zones , 2013 .

[18]  Bradford H. Hager,et al.  Conman: vectorizing a finite element code for incompressible two-dimensional convection in the Earth's mantle , 1990 .

[19]  D. Pelletier,et al.  Adaptive finite element method for mixed convection , 1995 .

[20]  J. Peraire,et al.  Mesh generation and adaptivity for the solution of compressible viscous high speed flows , 1995 .

[21]  Rainald Löhner,et al.  Mesh adaptation in fluid mechanics , 1995 .

[22]  Masaru Kono,et al.  A numerical dynamo benchmark , 2001 .

[23]  O. C. Zienkiewicz,et al.  The Finite Element Method for Fluid Dynamics , 2005 .

[24]  U. Christensen Geodynamic models of deep subduction , 2001 .

[25]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[26]  U. Christensen,et al.  Channeling of plume flow beneath mid-ocean ridges , 2001 .

[27]  T. Dahm,et al.  Simulation of magma ascent by dykes in the mantle beneath mid-ocean ridges , 2004 .

[28]  O. C. Zienkiewicz,et al.  An adaptive finite element method for high speed compressible flow , 1985 .

[29]  N. Sleep,et al.  Numerical Modelling of Tectonic Flow behind Island Arcs , 1974 .

[30]  O. C. Zienkiewicz,et al.  Adaptive mesh generation for fluid mechanics problems , 2000 .

[31]  D. Stevenson,et al.  Physical model of source region of subduction zone volcanics , 1992 .