Optimal Control of Stochastic Hybrid Systems Based on Locally Consistent Markov Decision Processes

This paper applies a known approach for approximating controlled stochastic diffusion to hybrid systems. Stochastic hybrid systems are approximated by locally consistent Markov decision processes that preserve local mean and covariance. A randomized switching policy is introduced for approximating the dynamics on the switching boundaries. The validity of the approximation is shown by solving the optimal control problem of minimizing a cost until a target set is reached using dynamic programming. It is shown that using the randomized switching policy, the solution obtained based on the discrete approximation converges to the solution of the original problem

[1]  Donald E. Kirk,et al.  Optimal Control Theory , 1970 .

[2]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[3]  Emilio O. Roxin Optimal Control Theory (L. D. Berkovitz) , 1976 .

[4]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[5]  Anil Nerode,et al.  Models for Hybrid Systems: Automata, Topologies, Controllability, Observability , 1992, Hybrid Systems.

[6]  M. K. Ghosh,et al.  Optimal control of switching diffusions with application to flexible manufacturing systems , 1993 .

[7]  Ari Arapostathis,et al.  Controlled Switching Diffusions as Hybrid Processes , 1995, Hybrid Systems.

[8]  Anil Nerode,et al.  Hybrid Systems: Chattering Approximation to Relaxed Controls , 1995, Hybrid Systems.

[9]  Thomas A. Henzinger,et al.  Hybrid systems III : verification and control , 1996 .

[10]  A. Bensoussan,et al.  Hybrid control and dynamic programming , 1997 .

[11]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[12]  H. Sussmann,et al.  A maximum principle for hybrid optimal control problems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[13]  A. Bensoussan,et al.  Stochastic Hybrid Control , 2000 .

[14]  S. Sastry,et al.  Towars a Theory of Stochastic Hybrid Systems , 2000, HSCC.

[15]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[16]  John Lygeros,et al.  Towars a Theory of Stochastic Hybrid Systems , 2000, HSCC.

[17]  Christos G. Cassandras,et al.  Optimal control of a class of hybrid systems , 2001, IEEE Trans. Autom. Control..

[18]  Anders Rantzer,et al.  Convex dynamic programming for hybrid systems , 2002, IEEE Trans. Autom. Control..

[19]  Brian C. Williams,et al.  Mode Estimation of Probabilistic Hybrid Systems , 2002, HSCC.

[20]  John Lygeros,et al.  Reachability Questions in Piecewise Deterministic Markov Processes , 2003, HSCC.

[21]  John Lygeros,et al.  Stochastic Hybrid Models: An Overview , 2003, ADHS.

[22]  Feng Zhao,et al.  Estimation of Distributed Hybrid Systems Using Particle Filtering Methods , 2003, HSCC.

[23]  Arjan van der Schaft,et al.  Communicating Piecewise Deterministic Markov Processes , 2003, ADHS.

[24]  Panos J. Antsaklis,et al.  Results and Perspectives on Computational Methods for Optimal Control of Switched Systems , 2003, HSCC.

[25]  Rajeev Alur,et al.  Structured Modeling of Concurrent Stochastic Hybrid Systems , 2004, FORMATS/FTRTFT.

[26]  John Lygeros,et al.  A Stochastic Hybrid Model for Air Traffic Control Simulation , 2004, HSCC.

[27]  Manuela L. Bujorianu,et al.  Extended Stochastic Hybrid Systems and Their Reachability Problem , 2004, HSCC.

[28]  João Pedro Hespanha,et al.  Stochastic Hybrid Systems: Application to Communication Networks , 2004, HSCC.

[29]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .