Can shallow quantum circuits scramble local noise into global white noise?

Shallow quantum circuits are believed to be the most promising candidates for achieving early practical quantum advantage – this has motivated the development of a broad range of error mitigation techniques whose performance generally improves when the quantum state is well approximated by a global depolarising (white) noise model. While it has been crucial for demonstrating quantum supremacy that random circuits scramble local noise into global white noise—a property that has been proved rigorously—we investigate to what degree practical shallow quantum circuits scramble local noise into global white noise. We define two key metrics as (a) density matrix eigenvalue uniformity and (b) commutator norm. While the former determines the distance from white noise, the latter determines the performance of purification based error mitigation. We derive analytical approximate bounds on their scaling and find in most cases they nicely match numerical results. On the other hand, we simulate a broad class of practical quantum circuits and find that white noise is in certain cases a bad approximation posing significant limitations on the performance of some of the simpler error mitigation schemes. On a positive note, we find in all cases that the commutator norm is sufficiently small guaranteeing a very good performance of purification-based error mitigation. Lastly, we identify techniques that may decrease both metrics, such as increasing the dimensionality of the dynamical Lie algebra by gate insertions or randomised compiling.

[1]  Bálint Koczor,et al.  Algorithmic Shadow Spectroscopy , 2022, 2212.11036.

[2]  J. Lykken,et al.  Traversable wormhole dynamics on a quantum processor , 2022, Nature.

[3]  Michael J. Hoffmann,et al.  Purification-based quantum error mitigation of pair-correlated electron simulations , 2022, Nature Physics.

[4]  Patrick J. Coles,et al.  Challenges and opportunities in quantum machine learning , 2022, Nature Computational Science.

[5]  Bálint Koczor,et al.  Training Variational Quantum Circuits with CoVaR: Covariance Root Finding with Classical Shadows , 2022, Physical Review X.

[6]  S. Benjamin,et al.  Multicore Quantum Computing , 2022, Physical Review Applied.

[7]  L. K. Hansen,et al.  Noise-assisted variational quantum thermalization , 2021, Scientific Reports.

[8]  Patrick J. Coles,et al.  Diagnosing Barren Plateaus with Tools from Quantum Optimal Control , 2021, Quantum.

[9]  S. Benjamin,et al.  Quantum analytic descent , 2020, Physical Review Research.

[10]  S. Benjamin,et al.  Quantum natural gradient generalized to noisy and nonunitary circuits , 2019, Physical Review A.

[11]  F. Brandão,et al.  Random quantum circuits transform local noise into global white noise , 2021, 2111.14907.

[12]  M. Motta,et al.  Emerging quantum computing algorithms for quantum chemistry , 2021, WIREs Computational Molecular Science.

[13]  Bálint Koczor The dominant eigenvector of a noisy quantum state , 2021, New Journal of Physics.

[14]  Patrick J. Coles,et al.  Cost function dependent barren plateaus in shallow parametrized quantum circuits , 2021, Nature Communications.

[15]  K. Khosla,et al.  Simple mitigation of global depolarizing errors in quantum simulations. , 2021, Physical review. E.

[16]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[17]  Ryan Babbush,et al.  Virtual Distillation for Quantum Error Mitigation , 2020, Physical Review X.

[18]  Bálint Koczor Exponential Error Suppression for Near-Term Quantum Devices , 2020, Physical Review X.

[19]  S. Benjamin,et al.  Learning-Based Quantum Error Mitigation , 2020, PRX Quantum.

[20]  Barnaby van Straaten,et al.  Measurement Cost of Metric-Aware Variational Quantum Algorithms , 2020, PRX Quantum.

[21]  Xiao Yuan,et al.  Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation , 2020, Journal of the Physical Society of Japan.

[22]  Yvette de Sereville,et al.  Exploring entanglement and optimization within the Hamiltonian Variational Ansatz , 2020, PRX Quantum.

[23]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[24]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[25]  B. Bauer,et al.  Quantum Algorithms for Quantum Chemistry and Quantum Materials Science. , 2020, Chemical reviews.

[26]  E. Campbell,et al.  Compilation by stochastic Hamiltonian sparsification , 2019, Quantum.

[27]  B'alint Koczor,et al.  Variational-state quantum metrology , 2019, New Journal of Physics.

[28]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[29]  M. Schuld,et al.  Circuit-centric quantum classifiers , 2018, Physical Review A.

[30]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[31]  Zhenyu Cai,et al.  Mitigating coherent noise using Pauli conjugation , 2019, 1906.06270.

[32]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[33]  E. Campbell Random Compiler for Fast Hamiltonian Simulation. , 2018, Physical review letters.

[34]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[35]  Zhenyu Cai,et al.  Constructing Smaller Pauli Twirling Sets for Arbitrary Error Channels , 2018, Scientific Reports.

[36]  S. Benjamin,et al.  QuEST and High Performance Simulation of Quantum Computers , 2018, Scientific Reports.

[37]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[38]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[39]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[40]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[41]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[42]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[43]  Joseph Emerson,et al.  Scalable protocol for identification of correctable codes , 2007, 0710.1900.

[44]  G. Stewart,et al.  Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices , 1990 .