Hypersurface support and prime ideal spectra for stable categories

We use hypersurface support to classify thick (two-sided) ideals in the stable categories of representations for several families of finite-dimensional integrable Hopf algebras: bosonized quantum complete intersections, quantum Borels in type A, Drinfeld doubles of height 1 Borels in finite characteristic, and rings of functions on finite group schemes over a perfect field. We then identify the prime ideal (Balmer) spectra for these stable categories. In the curious case of functions on a finite group scheme G, the spectrum of the category is identified not with the spectrum of cohomology, but with the quotient of the spectrum of cohomology by the adjoint action of the subgroup of connected components π0(G) in G.

[1]  Kent B. Vashaw,et al.  Noncommutative tensor triangular geometry , 2019, American Journal of Mathematics.

[2]  L. Avramov,et al.  Restricting homology to hypersurfaces , 2016, 1803.06715.

[3]  S. Balchin,et al.  Spectra , 2021, Algebra and Applications.

[4]  Finite tensor categories , 2003, math/0301027.

[5]  D. Benson,et al.  Representations and Cohomology , 1991 .

[6]  H. Krause,et al.  Support varieties—an axiomatic approach , 2017, Mathematische Zeitschrift.

[7]  Yukio Doi,et al.  Multiplication alteration by two-cocycles - the quantum version , 1994 .

[8]  Pu Zhang,et al.  Triangulated Categories , 2021, Homological Theory of Representations.

[9]  W. Waterhouse,et al.  Introduction to Affine Group Schemes , 1979 .

[10]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[11]  Mark Goresky,et al.  On the Spectrum of the Equivariant Cohomology Ring , 2010, Canadian Journal of Mathematics.

[12]  Cris Negron,et al.  HYPERSURFACE SUPPORT FOR NONCOMMUTATIVE COMPLETE INTERSECTIONS , 2020, Nagoya Mathematical Journal.

[13]  D. Nikshych,et al.  Pointed braided tensor categories , 2017, Tensor Categories and Hopf Algebras.

[14]  Ragnar-Olaf Buchweitz,et al.  Support varieties and cohomology over complete intersections , 2000 .

[15]  David Eisenbud,et al.  Homological algebra on a complete intersection, with an application to group representations , 1980 .

[16]  E. Friedlander,et al.  Π-SUPPORTS FOR MODULES FOR FINITE GROUP SCHEMES , 2006 .

[17]  R. Thomason The classification of triangulated subcategories , 1997, Compositio Mathematica.

[18]  A. Neeman,et al.  The chromatic tower for D(R) , 1992 .

[19]  Paul Balmer Spectra, spectra, spectra – Tensor triangular spectra versus Zariski spectra of endomorphism rings , 2010 .

[20]  C. Negron,et al.  Support for integrable Hopf algebras via noncommutative hypersurfaces , 2020, 2005.02965.

[21]  D. Benson,et al.  Examples of support varieties for Hopf algebras with noncommutative tensor products , 2013, 1308.5262.

[22]  A. Suslin,et al.  Support varieties for infinitesimal group schemes , 1997 .

[23]  Tensor Triangular Geometry for Quantum Groups , 2017, 1702.01289.

[24]  The tensor structure on the representation category of the W_p triplet algebra , 2012 .

[25]  J. Rickard Idempotent Modules in the Stable Category , 1997 .

[26]  S. Gelaki,et al.  On finite non-degenerate braided tensor categories with a Lagrangian subcategory , 2017, Transactions of the American Mathematical Society, Series B.

[27]  A. Mathew The Galois group of a stable homotopy theory , 2014, 1404.2156.

[28]  J. Plavnik,et al.  Cohomology of finite tensor categories: duality and Drinfeld centers , 2018, 1807.08854.

[29]  Shawn X. Cui,et al.  On two invariants of three manifolds from Hopf algebras , 2017, Advances in Mathematics.

[30]  Dieter Happel,et al.  Triangulated categories in the representation theory of finite dimensional algebras , 1988 .

[31]  Paul Balmer The spectrum of prime ideals in tensor triangulated categories , 2004, math/0409360.

[32]  P. Etingof,et al.  Fusion categories and homotopy theory , 2009, 0909.3140.

[33]  Daniel K. Nakano,et al.  Noncommutative Tensor Triangular Geometry and the Tensor Product Property for Support Maps , 2021, International Mathematics Research Notices.

[34]  From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors , 2001, math/0111205.

[35]  P. A. Bergh,et al.  Cohomology of twisted tensor products , 2008, 0803.3689.

[36]  E. Friedlander,et al.  Cohomology for Drinfeld doubles of some infinitesimal group schemes , 2017, Algebra & Number Theory.

[37]  D. Benson,et al.  Rank varieties for a class of finite-dimensional local algebras , 2007 .

[38]  S. Witherspoon,et al.  Tensor Products and Support Varieties for Some Noncocommutative Hopf Algebras , 2016, 1611.10285.

[39]  Henning Krause,et al.  Local cohomology and support for triangulated categories , 2007 .

[40]  K. Shimizu Integrals for Finite Tensor Categories , 2017, 1702.02425.

[41]  H. Krause,et al.  Stratification for module categories of finite group schemes , 2015, 1510.06773.

[42]  D. Benson,et al.  Thick subcategories of the stable module category , 1997 .

[43]  A. Bruguières,et al.  ON THE CENTER OF FUSION CATEGORIES , 2012, 1203.4180.

[44]  S. Witherspoon,et al.  Support varieties for finite tensor categories: Complexity and tensor products , 2019 .

[45]  A. Kirillov,et al.  Lectures on tensor categories and modular functors , 2000 .

[46]  G. Lusztig Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra , 1990 .

[47]  K. Shimizu Non-degeneracy conditions for braided finite tensor categories , 2016, Advances in Mathematics.

[48]  Alexis Virelizier,et al.  Quantum double of Hopf monads and categorical centers , 2012 .

[49]  J. Rickard Derived categories and stable equivalence , 1989 .

[50]  Shrawan Kumar,et al.  Cohomology of quantum groups at roots of unity , 1993 .

[51]  C. Negron Log-Modular Quantum Groups at Even Roots of Unity and the Quantum Frobenius I , 2018, Communications in Mathematical Physics.

[52]  Ryo Takahashi Classifying thick subcategories of the stable category of Cohen-Macaulay modules , 2009, 0908.0107.

[53]  Leonard Evens,et al.  Cohomology of groups , 1991, Oxford mathematical monographs.

[54]  D. Quillen,et al.  The Spectrum of an Equivariant Cohomology Ring: II , 1971 .

[55]  Greg Stevenson Support theory via actions of tensor triangulated categories , 2011, 1105.4692.

[56]  Murray Gerstenhaber,et al.  On the Deformation of Rings and Algebras , 1964 .

[57]  H. H. Andersen,et al.  Quantum groups at roots of ±1 , 1996 .

[58]  P. A. Bergh,et al.  Support varieties for finite tensor categories: Complexity, realization, and connectedness. , 2019, 1905.07031.

[59]  V. Kac,et al.  Representations of quantum groups at roots of 1 , 1992 .

[60]  D. Nadler,et al.  Integral Transforms and Drinfeld Centers in Derived Algebraic Geometry , 2008, 0805.0157.

[61]  D. Benson,et al.  New incompressible symmetric tensor categories in positive characteristic , 2020, Duke Mathematical Journal.

[62]  S. Witherspoon,et al.  Varieties for Modules of Quantum Elementary Abelian Groups , 2006, 1312.5232.

[63]  S. Ng,et al.  Frobenius–Schur indicators and exponents of spherical categories , 2005, math/0601012.

[64]  Kent B. Vashaw Balmer spectra and Drinfeld centers , 2020, 2010.11287.