Macroeconomic forecasting using penalized regression methods

We study the suitability of lasso-type penalized regression techniques when applied to macroeconomic forecasting with high-dimensional datasets. We consider performance of the lasso-type methods when the true DGP is a factor model, contradicting the sparsity assumption underlying penalized regression methods. We also investigate how the methods handle unit roots and cointegration in the data. In an extensive simulation study we find that penalized regression methods are morerobust to mis-specification than factor models estimated by principal components, even if the underlying DGP is a factor model. Furthermore, the penalized regression methods are demonstrated to deliver forecast improvements over traditional approaches when applied to non-stationary data containing cointegrated variables, despite a deterioration of the selective capabilities. Finally, we also consider an empirical application to a large macroeconomic U.S. dataset and demonstrate that, in line with our simulations, penalized regression methods attain the best forecast accuracy most frequently.

[1]  M. Rothschild,et al.  Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets , 1982 .

[2]  J. Stock,et al.  Forecasting with Many Predictors , 2006 .

[3]  Christophe Croux,et al.  Sparse and Robust Factor Modelling , 2011 .

[4]  Serena Ng,et al.  Are more data always better for factor analysis , 2006 .

[5]  J. Stock,et al.  Macroeconomic Forecasting Using Diffusion Indexes , 2002 .

[6]  M. Hallin,et al.  Dynamic factor models with infinite-dimensional factor spaces: One-sided representations , 2013 .

[7]  Marco Lippi,et al.  OPENING THE BLACK BOX: STRUCTURAL FACTOR MODELS WITH LARGE CROSS SECTIONS , 2009, Econometric Theory.

[8]  Massimiliano Marcellino,et al.  Factor Forecasts for the UK , 2005 .

[9]  C. De Mol,et al.  Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components? , 2006, SSRN Electronic Journal.

[10]  Peter Reinhard Hansen,et al.  The Model Confidence Set , 2010 .

[11]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[12]  Serena Ng,et al.  A Factor Analysis of Bond Risk Premia , 2009 .

[13]  M. Hallin,et al.  The Generalized Dynamic-Factor Model: Identification and Estimation , 2000, Review of Economics and Statistics.

[14]  Mark W. Watson,et al.  Generalized Shrinkage Methods for Forecasting Using Many Predictors , 2012 .

[15]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[16]  Marco Lippi,et al.  Dynamic Factor Models, Cointegration, and Error Correction Mechanisms , 2015, 1510.02399.

[17]  Matteo Luciani,et al.  Forecasting with Approximate Dynamic Factor Models: The Role of Non-Pervasive Shocks , 2011 .

[18]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[19]  Barbara Rossi,et al.  In-Sample Inference and Forecasting in Misspecified Factor Models , 2016 .

[20]  Seung C. Ahn,et al.  Eigenvalue Ratio Test for the Number of Factors , 2013 .

[21]  M. Hallin,et al.  Determining the Number of Factors in the General Dynamic Factor Model , 2007 .

[22]  A. Onatski Determining the Number of Factors from Empirical Distribution of Eigenvalues , 2010, The Review of Economics and Statistics.

[23]  Jiahan Li,et al.  Forecasting Macroeconomic Time Series: LASSO-Based Approaches and Their Forecast Combinations with Dynamic Factor Models , 2014 .

[24]  Sandra Eickmeier,et al.  How Successful are Dynamic Factor Models at Forecasting Output and Inflation? A Meta-Analytic Approach , 2008 .

[25]  Matteo Barigozzi,et al.  Non-Stationary Dynamic Factor Models for Large Datasets , 2016, 1602.02398.

[26]  I. Jolliffe,et al.  A Modified Principal Component Technique Based on the LASSO , 2003 .

[27]  J. Bai,et al.  Forecasting economic time series using targeted predictors , 2008 .

[28]  M. Hashem Pesaran,et al.  Variable Selection, Estimation and Inference for Multi-Period Forecasting Problems , 2010 .

[29]  G. Cubadda,et al.  Macroeconomic Forecasting and Structural Analysis Through Regularized Reduced-Rank Regression , 2013 .

[30]  J. Urbain,et al.  A multivariate invariance principle for modified wild bootstrap methods with an application to unit root testing , 2014 .

[31]  J. Stock,et al.  Macroeconomic forecasting in the Euro area: Country specific versus area-wide information , 2003 .

[32]  P. Bickel,et al.  Large Vector Auto Regressions , 2011, 1106.3915.

[33]  Eduardo F. Mendes,et al.  ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors , 2016 .

[34]  Carsten Trenkler,et al.  Forecasting VARs, model selection, and shrinkage , 2015 .

[35]  A. Kock,et al.  Oracle Inequalities for High Dimensional Vector Autoregressions , 2012, 1311.0811.

[36]  H. Dette,et al.  The adaptive lasso in high-dimensional sparse heteroscedastic models , 2013 .

[37]  Fotios Petropoulos,et al.  forecast: Forecasting functions for time series and linear models , 2018 .

[38]  Norman R. Swanson,et al.  Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence , 2010 .

[39]  Christophe Croux,et al.  Least angle regression for time series forecasting with many predictors , 2008 .

[40]  Massimiliano Marcellino,et al.  Factor-Augmented Error Correction Models , 2008 .

[41]  Marco Lippi,et al.  The Generalized Dynamic Factor Model , 2002 .

[42]  Matteo Barigozzi,et al.  Improved penalization for determining the number of factors in approximate factor models , 2010 .

[43]  Laurent A.F. Callot,et al.  Oracle Efficient Estimation and Forecasting with the Adaptive Lasso and the Adaptive Group Lasso in Vector Autoregressions , 2012 .

[44]  J. Bai,et al.  Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions , 2006 .

[45]  Nan-Jung Hsu,et al.  Subset selection for vector autoregressive processes using Lasso , 2008, Comput. Stat. Data Anal..

[46]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[47]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[48]  Jianhua Z. Huang,et al.  Sparse principal component analysis via regularized low rank matrix approximation , 2008 .

[49]  Serena Ng,et al.  Working Paper Series , 2019 .

[50]  P. Phillips,et al.  AUTOMATED ESTIMATION OF VECTOR ERROR CORRECTION MODELS , 2012, Econometric Theory.

[51]  George Athanasopoulos,et al.  Forecasting: principles and practice , 2013 .

[52]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[53]  Johannes Tang Kristensen,et al.  Diffusion Indexes With Sparse Loadings , 2017 .

[54]  Jean Boivin,et al.  Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach , 2003 .

[55]  Christophe Croux,et al.  Forecasting using sparse cointegration , 2016 .

[56]  Taewook Lee,et al.  Penalized regression models with autoregressive error terms , 2013 .

[57]  Kunpeng Li,et al.  Estimation and Inference of FAVAR Models , 2014 .

[58]  D. Giannone,et al.  Large Bayesian vector auto regressions , 2010 .

[59]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[60]  A. Kock CONSISTENT AND CONSERVATIVE MODEL SELECTION WITH THE ADAPTIVE LASSO IN STATIONARY AND NONSTATIONARY AUTOREGRESSIONS , 2015, Econometric Theory.

[61]  Massimiliano Marcellino,et al.  Forecasting with Factor-Augmented Error Correction Models , 2010 .

[62]  Catherine Doz,et al.  A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models , 2006, Review of Economics and Statistics.

[63]  Florian Ziel,et al.  Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR-ARCH type processes , 2015, Comput. Stat. Data Anal..

[64]  J. Stock,et al.  A Comparison of Direct and Iterated Multistep Ar Methods for Forecasting Macroeconomic Time Series , 2005 .

[65]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[66]  Catherine Doz,et al.  A Two-Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering , 2007 .

[67]  Chih-Ling Tsai,et al.  Regression coefficient and autoregressive order shrinkage and selection via the lasso , 2007 .

[68]  Y. Nardi,et al.  Autoregressive process modeling via the Lasso procedure , 2008, J. Multivar. Anal..