Organic matter mineralization in modern and ancient ferruginous sediments

[1]  D. Niekerk,et al.  Insights into the processes and controls on the absolute abundance and distribution of manganese in Precambrian iron formations , 2020 .

[2]  C. Michiels,et al.  Magnetite biomineralization in ferruginous waters and early Earth evolution , 2020, Earth and Planetary Science Letters.

[3]  C. Michiels,et al.  Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans , 2019, Science Advances.

[4]  P. Hong,et al.  Effects of primitive photosynthesis on Earth’s early climate system , 2019, Nature Geoscience.

[5]  J. Russell,et al.  Characterization of Iron in Lake Towuti sediment , 2019, Chemical Geology.

[6]  J. Russell,et al.  Formation of diagenetic siderite in modern ferruginous sediments , 2019, Geology.

[7]  J. Russell,et al.  Empowering conventional Rock-Eval pyrolysis for organic matter characterization of the siderite-rich sediments of Lake Towuti (Indonesia) using End-Member Analysis , 2019, Organic Geochemistry.

[8]  D. Schrag,et al.  A small marine biosphere in the Proterozoic , 2018, Geobiology.

[9]  M. Alawi,et al.  Metabolic potential of microbial communities from ferruginous sediments , 2018, Environmental microbiology.

[10]  B. Jørgensen,et al.  Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea , 2018, The ISME Journal.

[11]  D. Canfield,et al.  A Mesoproterozoic iron formation , 2018, Proceedings of the National Academy of Sciences.

[12]  D. Wagner,et al.  A simple and inexpensive technique for assessing contamination during drilling operations , 2017 .

[13]  M. Alawi,et al.  Geomicrobiological Features of Ferruginous Sediments from Lake Towuti, Indonesia , 2016, Front. Microbiol..

[14]  E. Roden,et al.  Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park , 2016, Geobiology.

[15]  S. Katsev,et al.  Organic carbon burial efficiencies in sediments: The power law of mineralization revisited , 2015 .

[16]  D. Canfield,et al.  Iron oxides, divalent cations, silica, and the early earth phosphorus crisis , 2015 .

[17]  D. Canfield,et al.  Sulfate was a trace constituent of Archean seawater , 2014, Science.

[18]  B. Jørgensen,et al.  Direct analysis of volatile fatty acids in marine sediment porewater by two‐dimensional ion chromatography‐mass spectrometry , 2014 .

[19]  J. Russell,et al.  Glacial forcing of central Indonesian hydroclimate since 60,000 y B.P. , 2014, Proceedings of the National Academy of Sciences.

[20]  Imran,et al.  The Towuti Drilling Project: paleoenvironments, biological evolution, and geomicrobiology of a tropical Pacific lake , 2012, Scientific Drilling.

[21]  D. Canfield,et al.  Green rust formation controls nutrient availability in a ferruginous water column , 2012 .

[22]  F. Gelman,et al.  Geochemical evidence for iron‐mediated anaerobic oxidation of methane , 2011 .

[23]  B. Jørgensen,et al.  A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark) , 2011 .

[24]  R. Keil Terrestrial influences on carbon burial at sea , 2011, Proceedings of the National Academy of Sciences.

[25]  Bernhard Schink,et al.  Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake , 2011, Applied and Environmental Microbiology.

[26]  E. Roden,et al.  Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater , 2011, Geobiology.

[27]  D. Canfield,et al.  Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History , 2011 .

[28]  S. Katsev,et al.  The methane cycle in ferruginous Lake Matano , 2011, Geobiology.

[29]  K. Knittel,et al.  Anaerobic oxidation of methane: progress with an unknown process. , 2009, Annual review of microbiology.

[30]  T. Waite,et al.  The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals , 2009 .

[31]  D. Canfield,et al.  Photoferrotrophs thrive in an Archean Ocean analogue , 2008, Proceedings of the National Academy of Sciences.

[32]  Uri Manor,et al.  Quantification of co-occurring reaction rates in deep subseafloor sediments , 2008 .

[33]  D. Canfield,et al.  Early anaerobic metabolisms , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  S. Crowe,et al.  Alteration of iron‐rich lacustrine sediments by dissimilatory iron‐reducing bacteria , 2006, Geobiology.

[35]  Mike S. M. Jetten,et al.  A microbial consortium couples anaerobic methane oxidation to denitrification , 2006, Nature.

[36]  Keita Yamada,et al.  Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era , 2006, Nature.

[37]  D. Canfield THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to Robert M. Garrels , 2005 .

[38]  D. Canfield,et al.  Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates , 2005 .

[39]  B. Jørgensen,et al.  A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements , 2004 .

[40]  E. Roden Diversion of Electron Flow from Methanogenesis to Crystalline Fe(III) Oxide Reduction in Carbon-Limited Cultures of Wetland Sediment Microorganisms , 2003, Applied and Environmental Microbiology.

[41]  E. Roden,et al.  Competition between Fe(III)-Reducing and Methanogenic Bacteria for Acetate in Iron-Rich Freshwater Sediments , 2003, Microbial Ecology.

[42]  E. Roden Fe(III) Oxide Reactivity Toward Biological versus Chemical Reduction , 2003 .

[43]  A. Roychoudhury,et al.  The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters , 2000 .

[44]  Michael J. Whiticar,et al.  Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane , 1999 .

[45]  E. Roden,et al.  Influence of Aqueous and Solid-Phase Fe(II) Complexants on Microbial Reduction of Crystalline Iron(III) Oxides† , 1999 .

[46]  Derek R. Lovley,et al.  Microbiological evidence for Fe(III) reduction on early Earth , 1998, Nature.

[47]  Hilairy E. Hartnett,et al.  Influence of oxygen exposure time on organic carbon preservation in continental margin sediments , 1998, Nature.

[48]  D. Canfield,et al.  The geochemistry of river particulates from the continental USA: major elements. , 1997, Geochimica et cosmochimica acta.

[49]  J. Hedges,et al.  Sedimentary organic matter preservation: an assessment and speculative synthesis , 1995 .

[50]  B. Jørgensen,et al.  Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus bay, Denmark , 1994 .

[51]  D. Canfield,et al.  The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. , 1993, Geochimica et cosmochimica acta.

[52]  D. Canfield,et al.  The reactivity of sedimentary iron minerals toward sulfide , 1992 .

[53]  D. Lovley,et al.  Availability of Ferric Iron for Microbial Reduction in Bottom Sediments of the Freshwater Tidal Potomac River , 1986, Applied and environmental microbiology.

[54]  D. Lovley,et al.  Organic Matter Mineralization with Reduction of Ferric Iron in Anaerobic Sediments , 1986, Applied and environmental microbiology.

[55]  U. Schwertmann,et al.  Properties of Goethites of Varying Crystallinity , 1985 .

[56]  B. Jørgensen Mineralization of organic matter in the sea bed—the role of sulphate reduction , 1982, Nature.

[57]  D. Hammond,et al.  Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis , 1979 .

[58]  J. Russell,et al.  Hydrological connectivity and mixing of Lake Towuti, Indonesia in response to paleoclimatic changes over the last 60,000 years , 2015 .

[59]  Byong-Hun Jeon,et al.  Inhibition of biological reductive dissolution of hematite by ferrous iron. , 2004, Environmental science & technology.

[60]  R. Berner Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over phanerozoic time , 1989 .

[61]  Jørgensen BoBarker A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments , 1978 .

[62]  J. P. Riley,et al.  A modified single solution method for the determination of phosphate in natural waters , 1962 .