Existence and sum decomposition of vertex polyhedral convex envelopes

Convex envelopes are a very useful tool in global optimization. However finding the exact convex envelope of a function is a difficult task in general. This task becomes considerably simpler in the case where the domain is a polyhedron and the convex envelope is vertex polyhedral, i.e., has a polyhedral epigraph whose vertices correspond to the vertices of the domain. A further simplification is possible when the convex envelope is sum decomposable, i.e., the convex envelope of a sum of functions coincides with the sum of the convex envelopes of the summands. In this paper we provide characterizations and sufficient conditions for the existence of a vertex polyhedral convex envelope. Our results extend and unify several results previously obtained for special cases of this problem. We then characterize sum decomposability of vertex polyhedral convex envelopes, and we show, among else, that the vertex polyhedral convex envelope of a sum of functions coincides with the sum of the vertex polyhedral convex envelopes of the summands if and only if the latter sum is vertex polyhedral.

[1]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[2]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[3]  Nikolaos V. Sahinidis,et al.  Convex extensions and envelopes of lower semi-continuous functions , 2002, Math. Program..

[4]  Christodoulos A. Floudas,et al.  Trilinear Monomials with Mixed Sign Domains: Facets of the Convex and Concave Envelopes , 2004, J. Glob. Optim..

[5]  F. Giannessi,et al.  Connections between Nonlinear Programming and Discrete Optimization , 1998 .

[6]  Nikolaos V. Sahinidis,et al.  Analysis of Bounds for Multilinear Functions , 2001, J. Glob. Optim..

[7]  James E. Falk Technical Note - Sharper Bounds on Nonconvex Programs , 1974, Oper. Res..

[8]  James E. Falk,et al.  A Successive Underestimation Method for Concave Minimization Problems , 1976, Math. Oper. Res..

[9]  Hanif D. Sherali,et al.  CONVEX ENVELOPES OF MULTILINEAR FUNCTIONS OVER A UNIT HYPERCUBE AND OVER SPECIAL DISCRETE SETS , 1997 .

[10]  Klaus Kleibohm,et al.  Bemerkungen zum Problem der nichtkonvexen Programmierung , 1967, Unternehmensforschung.

[11]  F. Tardella On the equivalence between some discrete and continuous optimization problems , 1991 .

[12]  N. Sahinidis,et al.  Convexification and Global Optimization in Continuous And , 2002 .

[13]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[14]  Anatoliy D. Rikun,et al.  A Convex Envelope Formula for Multilinear Functions , 1997, J. Glob. Optim..

[15]  S. Selcuk Erenguc,et al.  Using convex envelopes to solve the interactive fixed-charge linear programming problem , 1988 .

[16]  Fabio Tardella,et al.  On a class of functions attaining their maximum at the vertices of a polyhedron , 1989, Discret. Appl. Math..

[17]  J. E. Falk,et al.  An Algorithm for Separable Nonconvex Programming Problems , 1969 .

[18]  Christodoulos A. Floudas,et al.  Convex envelopes for edge-concave functions , 2005, Math. Program..

[19]  Harold P. Benson,et al.  Concave envelopes of monomial functions over rectangles , 2004 .

[20]  J. E. Falk Lagrange Multipliers and Nonconvex Programs , 1969 .

[21]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[22]  F. Tardella On the existence of polyhedral convex envelopes , 2004 .

[23]  Hanif D. Sherali,et al.  An explicit characterization of the convex envelope of a bivariate bilinear function over special polytopes , 1991 .

[24]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[25]  Yves Crama Concave extensions for nonlinear 0–1 maximization problems , 1993, Math. Program..

[26]  Nikolaos V. Sahinidis,et al.  Semidefinite Relaxations of Fractional Programs via Novel Convexification Techniques , 2001, J. Glob. Optim..

[27]  Christodoulos A. Floudas,et al.  Trilinear Monomials with Positive or Negative Domains: Facets of the Convex and Concave Envelopes , 2004 .

[28]  Harold P. Benson On the Construction of Convex and Concave Envelope Formulas for Bilinear and Fractional Functions on Quadrilaterals , 2004, Comput. Optim. Appl..

[29]  Stephen J. Grotzinger,et al.  Supports and convex envelopes , 1985, Math. Program..

[30]  J. Ben Rosen,et al.  An Algorithm for Global Minimization of Linearly Constrained Concave Quadratic Functions , 1987, Math. Oper. Res..

[31]  Reiner Horst,et al.  On the convexification of nonlinear programming problems: An applications-oriented survey , 1984 .

[32]  HAROLD P. BENSON Using concave envelopes to globally solve the nonlinear sum of ratios problem , 2002, J. Glob. Optim..