An Introductory Framework for Choosing Spatiotemporal Analytical Tools in Population-Level Eco-Epidemiological Research

Spatiotemporal visualization and analytical tools (SATs) are increasingly being applied to risk-based surveillance/monitoring of adverse health events affecting humans, animals, and ecosystems. Different disciplines use diverse SATs to address similar research questions. The juxtaposition of these diverse techniques provides a list of options for researchers who are new to population-level spatial eco-epidemiology. Here, we are conducting a narrative review to provide an overview of the multiple available SATs, and introducing a framework for choosing among them when addressing common research questions across disciplines. The framework is comprised of three stages: (a) pre-hypothesis testing stage, in which hypotheses regarding the spatial dependence of events are generated; (b) primary hypothesis testing stage, in which the existence of spatial dependence and patterns are tested; and (c) secondary-hypothesis testing and spatial modeling stage, in which predictions and inferences were made based on the identified spatial dependences and associated covariates. In this step-wise process, six key research questions are formulated, and the answers to those questions should lead researchers to select one or more methods from four broad categories of SATs: (T1) visualization and descriptive analysis; (T2) spatial/spatiotemporal dependence and pattern recognition; (T3) spatial smoothing and interpolation; and (T4) geographic correlation studies (i.e., spatial modeling and regression). The SATs described here include both those used for decades and also other relatively new tools. Through this framework review, we intend to facilitate the choice among available SATs and promote their interdisciplinary use to support improving human, animal, and ecosystem health.

[1]  P. Diggle,et al.  Kernel estimation of relative risk , 1995 .

[2]  Andrew B. Lawson,et al.  Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology , 2008 .

[3]  A. Stewart Fotheringham,et al.  Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity , 2010 .

[4]  H. Checkoway,et al.  Epidemiologic programs for computers and calculators. Use of Poisson regression models in estimating incidence rates and ratios. , 1985, American journal of epidemiology.

[5]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[6]  Peter J. Diggle,et al.  A Conditional Approach to Point Process Modelling of Elevated Risk , 1994 .

[7]  Norman E. Breslow,et al.  Estimation of Disease Rates in Small Areas: A new Mixed Model for Spatial Dependence , 2000 .

[8]  D. Clayton,et al.  Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. , 1987, Biometrics.

[9]  M. Craft,et al.  Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling , 2016, Front. Microbiol..

[10]  R. D. Morris,et al.  Aggregation of existing geographic regions to diminish spurious variability of disease rates. , 1993, Statistics in medicine.

[11]  M. Tomczak,et al.  Spatial Interpolation and its Uncertainty Using Automated Anisotropic Inverse Distance Weighting (IDW) - Cross-Validation/Jackknife Approach , 1998 .

[12]  J D Mayer,et al.  The role of spatial analysis and geographic data in the detection of disease causation. , 1983, Social science & medicine.

[13]  B. Ripley Modelling Spatial Patterns , 1977 .

[14]  Roger Bivand,et al.  Computing the Jacobian in Gaussian Spatial Autoregressive Models: An Illustrated Comparison of Available Methods , 2013 .

[15]  Duncan Lee,et al.  Spatio-Temporal Areal Unit Modeling in R with Conditional Autoregressive Priors Using the CARBayesST Package , 2018 .

[16]  Andrew Crooks,et al.  Agent-based Models of Geographical Systems , 2012 .

[17]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[18]  David R. B. Stockwell,et al.  Effects of sample size on accuracy of species distribution models , 2002 .

[19]  Fahui Wang,et al.  A Scale-Space Clustering Method: Mitigating the Effect of Scale in the Analysis of Zone-Based Data , 2008 .

[20]  L. Pickle,et al.  Application of a weighted head-banging algorithm to mortality data maps. , 1999, Statistics in medicine.

[21]  J. Andrew Royle,et al.  Incorporating citizen science data in spatially explicit integrated population models. , 2019, Ecology.

[22]  T. Carpenter,et al.  Use of the scan statistic on disaggregated province-based data: foot-and-mouth disease in Iran. , 2005, Preventive veterinary medicine.

[23]  Dirk U. Pfeiffer,et al.  Emerging viral zoonoses: Frameworks for spatial and spatiotemporal risk assessment and resource planning , 2008, The Veterinary Journal.

[24]  D. Welty Lefever,et al.  Measuring Geographic Concentration by Means of the Standard Deviational Ellipse , 1926, American Journal of Sociology.

[25]  Luis A. Garcia,et al.  Comparison of Ordinary Kriging, Regression Kriging, and Cokriging Techniques to Estimate Soil Salinity Using LANDSAT Images , 2010 .

[26]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[27]  J. Álvarez,et al.  Comparison of spatiotemporal patterns of historic natural Anthrax outbreaks in Minnesota and Kazakhstan , 2019, PloS one.

[28]  A. Balbi,et al.  Extended Daily Dialysis in Acute Kidney Injury Patients: Metabolic and Fluid Control and Risk Factors for Death , 2013, PloS one.

[29]  Geoffrey S. Watson Trend Surface Analysis and Spatial Correlation , 1969 .

[30]  Jing He,et al.  Spatiotemporal Interpolation for Environmental Modelling , 2016, Sensors.

[31]  Landon Fridman Detwiler,et al.  Visualization and analytics tools for infectious disease epidemiology: A systematic review , 2014, J. Biomed. Informatics.

[32]  Marcelo Azevedo Costa,et al.  A fair comparison between the spatial scan and the Besag–Newell Disease clustering tests , 2005, Environmental and Ecological Statistics.

[33]  P. Mellor,et al.  Assessing the risk of windborne spread of bluetongue in the 2006 outbreak of disease in northern Europe , 2007, Veterinary Record.

[34]  Andrew B Lawson,et al.  Bayesian latent structure models with space-time dependent covariates , 2012, Statistical modelling.

[35]  Xiaojun Yang,et al.  Spatial Interpolation , 2017, Encyclopedia of GIS.

[36]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[37]  G. Sternbach The history of anthrax. , 2003, The Journal of emergency medicine.

[38]  R. Ocaña-Riola Common errors in disease mapping. , 2010, Geospatial health.

[39]  Leonhard Held,et al.  A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$ , 2011, Comput. Stat..

[40]  M. Martínez,et al.  Spatio-temporal kriging analysis to identify the role of wild boar in the spread of African swine fever in the Russian Federation , 2018, Spatial Statistics.

[41]  Duncan Lee,et al.  CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors , 2013 .

[42]  Achim Zeileis,et al.  Structured Additive Regression Models: An R Interface to BayesX , 2015 .

[43]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.

[44]  A. Hernández-Vásquez,et al.  [Geographic information systems]. , 2016, Revista peruana de medicina experimental y salud publica.

[45]  L. Anselin From SpaceStat to CyberGIS , 2012 .

[46]  Bruce J. Worton,et al.  A CONVEX HULL-BASED ESTIMATOR OF HOME-RANGE SIZE , 1995 .

[47]  D. Pfeiffer,et al.  The Role of Spatial Analysis in Risk-Based Animal Disease Management , 2016 .

[48]  D. Rogers,et al.  Statistical models for spatially explicit biological data , 2012, Parasitology.

[49]  W. Verstraeten,et al.  Using the Gravity Model to Estimate the Spatial Spread of Vector-Borne Diseases , 2012, International journal of environmental research and public health.

[50]  B W Turnbull,et al.  The effects of scale on tests for disease clustering. , 1993, Statistics in medicine.

[51]  M. Fraga,et al.  Epigenetics and the environment: emerging patterns and implications , 2012, Nature Reviews Genetics.

[52]  A. Fielding,et al.  Testing the Generality of Bird‐Habitat Models , 1995 .

[53]  David W. S. Wong,et al.  An adaptive inverse-distance weighting spatial interpolation technique , 2008, Comput. Geosci..

[54]  T. Carpenter,et al.  Spatial analytical methods and geographic information systems: use in health research and epidemiology. , 1999, Epidemiologic reviews.

[55]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[56]  P. Moran Notes on continuous stochastic phenomena. , 1950, Biometrika.

[57]  Andrew B Lawson,et al.  Bayesian 2-Stage Space-Time Mixture Modeling With Spatial Misalignment of the Exposure in Small Area Health Data , 2012, Journal of agricultural, biological, and environmental statistics.

[58]  J. Ord,et al.  Local Spatial Autocorrelation Statistics: Distributional Issues and an Application , 2010 .

[59]  Stefania Bertazzon,et al.  GIS and Public Health , 2014, ISPRS Int. J. Geo Inf..

[60]  Ezra Susser,et al.  The eco- in eco-epidemiology. , 2006, International journal of epidemiology.

[61]  Jin Li,et al.  A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors , 2011, Ecol. Informatics.

[62]  Luc Anselin,et al.  Under the hood , 2002 .

[63]  Paul A. Zandbergen,et al.  A comparison of address point, parcel and street geocoding techniques , 2008, Comput. Environ. Urban Syst..

[64]  Andrew B. Lawson,et al.  Approximate methods in Bayesian point process spatial models , 2009, Comput. Stat. Data Anal..

[65]  Paul A. Zandbergen,et al.  Reference data and geocoding quality: Examining completeness and positional accuracy of street geocoded crime incidents , 2013 .

[66]  Youngihn Kho,et al.  GeoDa: An Introduction to Spatial Data Analysis , 2006 .

[67]  M. Charlton,et al.  Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis , 1998 .

[68]  Catherine Linard,et al.  Mapping populations at risk: improving spatial demographic data for infectious disease modeling and metric derivation , 2012, Population Health Metrics.

[69]  Mark Berman,et al.  Approximating Point Process Likelihoods with Glim , 1992 .

[70]  Magdalena Cerdá,et al.  Agent-Based Modeling in Public Health: Current Applications and Future Directions , 2018, Annual review of public health.

[71]  M. Kulldorff,et al.  A Space–Time Permutation Scan Statistic for Disease Outbreak Detection , 2005, PLoS medicine.

[72]  A S Fotheringham,et al.  The Modifiable Areal Unit Problem in Multivariate Statistical Analysis , 1991 .

[73]  Amy H Auchincloss,et al.  A new tool for epidemiology: the usefulness of dynamic-agent models in understanding place effects on health. , 2008, American journal of epidemiology.

[74]  Jin Li,et al.  A Critical Review of Spatial Predictive Modeling Process in Environmental Sciences with Reproducible Examples in R , 2019, Applied Sciences.

[75]  H. Wackernagle,et al.  Multivariate geostatistics: an introduction with applications , 1998 .

[76]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[77]  M. Gilbert,et al.  Identifying risk factors of highly pathogenic avian influenza (H5N1 subtype) in Indonesia. , 2011, Preventive veterinary medicine.

[78]  W. Laurance,et al.  Habitat Fragmentation, Variable Edge Effects, and the Landscape-Divergence Hypothesis , 2007, PloS one.

[79]  A. Linde DIC in variable selection , 2005 .

[80]  Ying C MacNab,et al.  Regression B‐spline smoothing in Bayesian disease mapping: with an application to patient safety surveillance , 2007, Statistics in medicine.

[81]  J. J. Abellán,et al.  Methodologic Issues and Approaches to Spatial Epidemiology , 2008, Environmental health perspectives.

[82]  Graham Dunn,et al.  Geographical epidemiology, spatial analysis and geographical information systems: a multidisciplinary glossary , 2007, Journal of Epidemiology and Community Health.

[83]  Xinguang Chen,et al.  Geographic area-based rate as a novel indicator to enhance research and precision intervention for more effective HIV/AIDS control , 2017, Preventive medicine reports.

[84]  Nathan Mantel,et al.  A Statistical Problem in Space and Time: Do Leukemia Cases Come in Clusters? , 1964 .

[85]  Andrew B. Lawson,et al.  Statistical Methods in Spatial Epidemiology: Lawson/Statistical Methods in Spatial Epidemiology , 2006 .

[86]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[87]  T. Tango,et al.  International Journal of Health Geographics a Flexibly Shaped Spatial Scan Statistic for Detecting Clusters , 2005 .

[88]  塚原 玲子,et al.  Trend-Surface Analysis , 1980, Encyclopedia of GIS.

[89]  Sudipto Banerjee,et al.  Bayesian Modeling and Analysis of Geostatistical Data. , 2017, Annual review of statistics and its application.

[90]  Robert Haining,et al.  Spatial Data Analysis: Theory and Practice , 2003 .

[91]  A. Lawson,et al.  Adjusting Moran's I for population density. , 1996, Statistics in medicine.

[92]  Peter J. Diggle,et al.  Point process methodology for on‐line spatio‐temporal disease surveillance , 2005 .

[93]  Luc Anselin,et al.  Model Validation in Spatial Econometrics: A Review and Evaluation of Alternative Approaches , 1988 .

[94]  K. Shadan,et al.  Available online: , 2012 .

[95]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[96]  Andrew B. Lawson,et al.  Statistical Methods in Spatial Epidemiology , 2001 .

[97]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[98]  Michael F Goodchild,et al.  Spatial Turn in Health Research , 2013, Science.

[99]  N. Mantel,et al.  Lack of seasonal- or temporal-spatial clustering of Down's syndrome births in Michigan. , 1967, American journal of epidemiology.

[100]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[101]  Hirotugu Akaike,et al.  On entropy maximization principle , 1977 .

[102]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[103]  R. Tibshirani,et al.  Generalized Additive Models , 1986 .

[104]  B. Turnbull,et al.  Monitoring for clusters of disease: application to leukemia incidence in upstate New York. , 1990, American journal of epidemiology.

[105]  Trevor Hastie,et al.  A statistical explanation of MaxEnt for ecologists , 2011 .

[106]  S. Ghosh,et al.  Performance of information criteria for spatial models , 2009, Journal of statistical computation and simulation.

[107]  Richard A. Bilonick,et al.  Monthly hydrogen ion deposition maps for the northeastern U.S. from July 1982 to September 1984 , 1988 .

[108]  S. Fotheringham,et al.  Geographically weighted summary statistics — aframework for localised exploratory data analysis , 2002 .

[109]  Peter Nijkamp,et al.  Reflections On Gravity and Entropy Models , 1975 .

[110]  A. Driks The Bacillus anthracis spore. , 2009, Molecular aspects of medicine.

[111]  Frederik P. Agterberg,et al.  Interactive spatial data analysis , 1996 .

[112]  Andrew B. Lawson,et al.  Space-time Bayesian small area disease risk models: development and evaluation with a focus on cluster detection , 2010, Environmental and Ecological Statistics.

[113]  M. Sordo Introduction to Neural Networks in Healthcare , 2002 .

[114]  M. Hugh-jones,et al.  Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecological [corrected] niche modeling. , 2007, The American journal of tropical medicine and hygiene.

[115]  S. Martino Approximate Bayesian Inference for Latent Gaussian Models , 2007 .

[116]  Y. MacNab,et al.  Autoregressive Spatial Smoothing and Temporal Spline Smoothing for Mapping Rates , 2001, Biometrics.

[117]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[118]  Olaf Berke,et al.  Exploratory spatial relative risk mapping. , 2005, Preventive veterinary medicine.

[119]  Daniel A. Griffith,et al.  An evaluation of correction techniques for boundary effects in spatial statistical analysis: traditional methods , 2010 .

[120]  A Gelman,et al.  A Method for Quantifying Artefacts in Mapping Methods Illustrated by Application to Headbanging , 2022 .

[121]  R. G. Davies,et al.  Methods to account for spatial autocorrelation in the analysis of species distributional data : a review , 2007 .

[122]  P. Durr,et al.  Sellers’ Revisited: A Big Data Reassessment of Historical Outbreaks of Bluetongue and African Horse Sickness due to the Long-Distance Wind Dispersion of Culicoides Midges , 2017, Front. Vet. Sci..

[123]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[124]  Keith Ord,et al.  Testing for Spatial Autocorrelation Among Regression Residuals , 2010 .

[125]  A. Stewart Fotheringham,et al.  Trends in quantitative methods III: stressing the visual , 1999 .

[126]  Sumio Watanabe,et al.  Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory , 2010, J. Mach. Learn. Res..

[127]  P. Elliott,et al.  Spatial Epidemiology: Current Approaches and Future Challenges , 2004, Environmental health perspectives.

[128]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[129]  Aki Vehtari,et al.  Understanding predictive information criteria for Bayesian models , 2013, Statistics and Computing.

[130]  P. Dixon Ripley's K Function , 2006 .

[131]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[132]  Neil M. Ferguson,et al.  Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling , 2012, PLoS Comput. Biol..

[133]  A. Getis The Analysis of Spatial Association by Use of Distance Statistics , 2010 .

[134]  Sharon X. Lee,et al.  EMMIXuskew: An R Package for Fitting Mixtures of Multivariate Skew t Distributions via the EM Algorithm , 2012, 1211.5290.

[135]  David L. Verbyla,et al.  Resampling methods for evaluating classification accuracy of wildlife habitat models , 1989 .

[136]  M Kulldorff,et al.  Spatial disease clusters: detection and inference. , 1995, Statistics in medicine.

[137]  Vytautas Grigonis,et al.  Geographic information system: Old principles with new capabilities , 2011 .

[138]  Pierre Goovaerts,et al.  Boundaries, links and clusters: a new paradigm in spatial analysis? , 2008, Environmental and Ecological Statistics.

[139]  Luc Anselin,et al.  Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics , 1995 .

[140]  R. Geary,et al.  The Contiguity Ratio and Statistical Mapping , 1954 .

[141]  Xuesong Han,et al.  Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence , 2017, PeerJ.

[142]  T. Carpenter,et al.  Analysis of time-space clustering in veterinary epidemiology. , 2000, Preventive veterinary medicine.

[143]  G. P. Patil,et al.  Upper level set scan statistic for detecting arbitrarily shaped hotspots , 2004, Environmental and Ecological Statistics.

[144]  G. Jacquez A k nearest neighbour test for space-time interaction. , 1996, Statistics in medicine.

[145]  A. Stewart Fotheringham,et al.  Trends in quantitative methods I: stressing the local , 1997 .

[146]  P Goovaerts Geostatistics: a common link between medical geography, mathematical geology, and medical geology. , 2014, Journal of the Southern African Institute of Mining and Metallurgy.

[147]  K. Kafadar,et al.  Smoothing geographical data, particularly rates of disease. , 1996, Statistics in medicine.

[148]  Andrés Perez,et al.  A Probability Co-Kriging Model to Account for Reporting Bias and Recognize Areas at High Risk for Zebra Mussels and Eurasian Watermilfoil Invasions in Minnesota , 2018, Front. Vet. Sci..

[149]  Kevin N. Gurney,et al.  An introduction to neural networks , 2018 .

[150]  A S Fotheringham,et al.  Geographically weighted Poisson regression for disease association mapping , 2005, Statistics in medicine.

[151]  Stan Openshaw,et al.  Modifiable Areal Unit Problem , 2008, Encyclopedia of GIS.

[152]  Paul A. Longley,et al.  Geographical information systems : principles, techniques, management, and applications , 2005 .

[153]  P. J. Clark,et al.  Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations , 1954 .

[154]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[155]  Roger Bivand,et al.  Comparing Implementations of Estimation Methods for Spatial Econometrics , 2015 .

[156]  Christian P. Robert,et al.  Statistics for Spatio-Temporal Data , 2014 .

[157]  F. Biondi,et al.  Space-time kriging extension of precipitation variability at 12 km spacing from tree-ring chronologies and its implications for drought analysis , 2013 .

[158]  Peter J. Diggle,et al.  Spatio-temporal point processes , 2010 .

[159]  A. Peterson,et al.  Ecologic Niche Modeling and Potential Reservoirs for Chagas Disease, Mexico. , 2002, Emerging infectious diseases.

[160]  Daniel L. Civco,et al.  Artificial Neural Networks for Land-Cover Classification and Mapping , 1993, Int. J. Geogr. Inf. Sci..

[161]  G. Arbia Spatial Econometrics , 2006, Encyclopedia of Big Data.

[162]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[163]  B. Schrödle A primer on disease mapping and ecological regression using INLA , 2011 .

[164]  Gerard Rushton,et al.  Analyzing Geographic Patterns of Disease Incidence: Rates of Late-Stage Colorectal Cancer in Iowa , 2004, Journal of Medical Systems.

[165]  L. Mariella,et al.  Spatial Temporal Conditional Auto-Regressive Model: A New Autoregressive Matrix , 2016 .

[166]  E G Knox,et al.  The Detection of Space‐Time Interactions , 1964 .

[167]  Matthew J. Smith,et al.  Protected areas network is not adequate to protect a critically endangered East Africa Chelonian: Modelling distribution of pancake tortoise, Malacochersus tornieri under current and future climates , 2013, bioRxiv.

[168]  David R. B. Stockwell,et al.  The GARP modelling system: problems and solutions to automated spatial prediction , 1999, Int. J. Geogr. Inf. Sci..

[169]  Julian Besag,et al.  The Detection of Clusters in Rare Diseases , 1991 .

[170]  David A. Elston,et al.  Empirical models for the spatial distribution of wildlife , 1993 .

[171]  Werner Kuhn,et al.  Designing a Language for Spatial Computing , 2015, AGILE Conf..

[172]  R. Reyment,et al.  Statistics and Data Analysis in Geology. , 1988 .

[173]  A. D. Diez Roux,et al.  A review of spatial methods in epidemiology, 2000-2010. , 2012, Annual review of public health.

[174]  F. N. David,et al.  A criterion for testing contagion in time and space , 1965 .

[175]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[176]  M. Fortin,et al.  Spatial statistics, spatial regression, and graph theory in ecology , 2012 .

[177]  R. Morris,et al.  Geographic information systems: their application in animal disease control. , 1991, Revue scientifique et technique.

[178]  David Holmes Disease maps: epidemics on the ground , 2011 .

[179]  Trevor Hastie,et al.  Kernel Smoothing Methods , 2009 .

[180]  P. Burridge,et al.  On the Cliff‐Ord Test for Spatial Correlation , 1980 .

[181]  M. Wall A close look at the spatial structure implied by the CAR and SAR models , 2004 .

[182]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields; The SPDE approach , 2010 .

[183]  A. Stein,et al.  Universal kriging and cokriging as a regression procedure. , 1991 .

[184]  J. Bithell An application of density estimation to geographical epidemiology. , 1990, Statistics in medicine.

[185]  Pemetaan Jumlah Balita,et al.  Spatial Scan Statistic , 2014, Encyclopedia of Social Network Analysis and Mining.

[186]  E. Delmelle,et al.  Advances in spatial epidemiology and geographic information systems. , 2017, Annals of epidemiology.

[187]  Christopher J. Paciorek,et al.  Computational techniques for spatial logistic regression with large data sets , 2007, Comput. Stat. Data Anal..

[188]  M. Hugh-jones,et al.  Ecological Niche Modeling of Bacillus anthracis on Three Continents: Evidence for Genetic-Ecological Divergence? , 2013, PloS one.

[189]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[190]  Duncan Lee,et al.  An adaptive spatiotemporal smoothing model for estimating trends and step changes in disease risk , 2014, 1411.0924.

[191]  Noel A Cressie,et al.  Spatial data-analysis of regional counts , 1989 .

[192]  Catherine Linard,et al.  Large-scale spatial population databases in infectious disease research , 2012, International Journal of Health Geographics.

[193]  Harry H. Kelejian,et al.  Spatial autocorrelation: A new computationally simple test with an application to per capita county police expenditures , 1992 .

[194]  Marcelo Azevedo Costa,et al.  Applications of Spatial Scan Statistics: A Review , 2009 .

[195]  A. McBratney,et al.  Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging , 1995 .

[196]  Luc Anselin,et al.  Thirty years of spatial econometrics , 2010 .

[197]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[198]  Gerard B. M. Heuvelink,et al.  Soil water content interpolation using spatio-temporal kriging with external drift , 2003 .

[199]  Luc Anselin,et al.  The Moran scatterplot as an ESDA tool to assess local instability in spatial association , 2019, Spatial Analytical Perspectives on GIS.

[200]  J. Cuzick,et al.  Spatial clustering for inhomogeneous populations , 1990 .

[201]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[202]  T. Hastie,et al.  Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions , 2006 .

[203]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[204]  M. Craft Infectious disease transmission and contact networks in wildlife and livestock , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.